Noise Threshold and Resource Cost of Fault-Tolerant Quantum Computing with Majorana Fermions in Hybrid Systems

被引:10
|
作者
Li, Ying [1 ]
机构
[1] Univ Oxford, Dept Mat, Parks Rd, Oxford OX1 3PH, England
基金
英国工程与自然科学研究理事会;
关键词
COMPUTATION; SUPERCONDUCTOR; ANYONS;
D O I
10.1103/PhysRevLett.117.120403
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Fault-tolerant quantum computing in systems composed of both Majorana fermions and topologically unprotected quantum systems, e.g., superconducting circuits or quantum dots, is studied in this Letter. Errors caused by topologically unprotected quantum systems need to be corrected with error-correction schemes, for instance, the surface code. We find that the error-correction performance of such a hybrid topological quantum computer is not superior to a normal quantum computer unless the topological charge of Majorana fermions is insusceptible to noise. If errors changing the topological charge are rare, the fault-tolerance threshold is much higher than the threshold of a normal quantum computer and a surface-code logical qubit could be encoded in only tens of topological qubits instead of about 1,000 normal qubits.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] UPPER BOUNDS ON THE NOISE THRESHOLD FOR FAULT-TOLERANT QUANTUM COMPUTING
    Kempe, Julia
    Regev, Oded
    Unger, Falk
    de Wolf, Ronald
    [J]. QUANTUM INFORMATION & COMPUTATION, 2010, 10 (5-6) : 361 - 376
  • [2] Upper bounds on the noise threshold for fault-tolerant quantum computing
    Kempe, Julia
    Regev, Oded
    Unger, Falk
    de Wolf, Ronald
    [J]. AUTOMATA, LANGUAGES AND PROGRAMMING, PT 1, PROCEEDINGS, 2008, 5125 : 845 - +
  • [3] Fault-tolerant quantum random-number generator certified by Majorana fermions
    Deng, Dong-Ling
    Duan, Lu-Ming
    [J]. PHYSICAL REVIEW A, 2013, 88 (01):
  • [4] Fault-tolerant Hybrid Quantum Software Systems
    Scheerer, Max
    Klamroth, Jonas
    Denninger, Oliver
    [J]. 2022 IEEE INTERNATIONAL CONFERENCE ON QUANTUM SOFTWARE (IEEE QSW 2022), 2022, : 52 - 57
  • [5] Overhead and noise threshold of fault-tolerant quantum error correction
    Steane, AM
    [J]. PHYSICAL REVIEW A, 2003, 68 (04):
  • [6] Resource Costs for Fault-Tolerant Linear Optical Quantum Computing
    Li, Ying
    Humphreys, Peter C.
    Mendoza, Gabriel J.
    Benjamin, Simon C.
    [J]. PHYSICAL REVIEW X, 2015, 5 (04):
  • [7] Efficient fault-tolerant quantum computing
    Steane, AM
    [J]. NATURE, 1999, 399 (6732) : 124 - 126
  • [8] Early Fault-Tolerant Quantum Computing
    Katabarwa, Amara
    Gratsea, Katerina
    Caesura, Athena
    Johnson, Peter D.
    [J]. PRX QUANTUM, 2024, 5 (02):
  • [9] Application of a Resource Theory for Magic States to Fault-Tolerant Quantum Computing
    Howard, Mark
    Campbell, Earl
    [J]. PHYSICAL REVIEW LETTERS, 2017, 118 (09)
  • [10] An Introduction into Fault-tolerant Quantum Computing
    Paler, Alexandru
    Devitt, Simon J.
    [J]. 2015 52ND ACM/EDAC/IEEE DESIGN AUTOMATION CONFERENCE (DAC), 2015,