Application of a Resource Theory for Magic States to Fault-Tolerant Quantum Computing

被引:179
|
作者
Howard, Mark [1 ]
Campbell, Earl [1 ]
机构
[1] Univ Sheffield, Dept Phys & Astron, Sheffield S3 7RH, S Yorkshire, England
基金
英国工程与自然科学研究理事会;
关键词
COMPUTATION; CIRCUITS;
D O I
10.1103/PhysRevLett.118.090501
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Motivated by their necessity for most fault-tolerant quantum computation schemes, we formulate a resource theory for magic states. First, we show that robustness of magic is a well-behaved magic monotone that operationally quantifies the classical simulation overhead for a Gottesman-Knill-type scheme using ancillary magic states. Our framework subsequently finds immediate application in the task of synthesizing non-Clifford gates using magic states. When magic states are interspersed with Clifford gates, Pauli measurements, and stabilizer ancillas-the most general synthesis scenario-then the class of synthesizable unitaries is hard to characterize. Our techniques can place nontrivial lower bounds on the number of magic states required for implementing a given target unitary. Guided by these results, we have found new and optimal examples of such synthesis.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Experimental magic state distillation for fault-tolerant quantum computing
    Souza, Alexandre M.
    Zhang, Jingfu
    Ryan, Colm A.
    Laflamme, Raymond
    [J]. NATURE COMMUNICATIONS, 2011, 2
  • [2] Experimental magic state distillation for fault-tolerant quantum computing
    Alexandre M. Souza
    Jingfu Zhang
    Colm A. Ryan
    Raymond Laflamme
    [J]. Nature Communications, 2
  • [3] Resource Costs for Fault-Tolerant Linear Optical Quantum Computing
    Li, Ying
    Humphreys, Peter C.
    Mendoza, Gabriel J.
    Benjamin, Simon C.
    [J]. PHYSICAL REVIEW X, 2015, 5 (04):
  • [4] Bound States for Magic State Distillation in Fault-Tolerant Quantum Computation
    Campbell, Earl T.
    Browne, Dan E.
    [J]. PHYSICAL REVIEW LETTERS, 2010, 104 (03)
  • [5] Efficient fault-tolerant quantum computing
    Steane, AM
    [J]. NATURE, 1999, 399 (6732) : 124 - 126
  • [6] Early Fault-Tolerant Quantum Computing
    Katabarwa, Amara
    Gratsea, Katerina
    Caesura, Athena
    Johnson, Peter D.
    [J]. PRX QUANTUM, 2024, 5 (02):
  • [7] An Introduction into Fault-tolerant Quantum Computing
    Paler, Alexandru
    Devitt, Simon J.
    [J]. 2015 52ND ACM/EDAC/IEEE DESIGN AUTOMATION CONFERENCE (DAC), 2015,
  • [8] Efficient fault-tolerant quantum computing
    Andrew M. Steane
    [J]. Nature, 1999, 399 : 124 - 126
  • [9] QUANTUM ERROR CORRECTION AND FAULT-TOLERANT QUANTUM COMPUTING
    Gaitan, Frank
    Li, Ran
    [J]. DECOHERENCE SUPPRESSION IN QUANTUM SYSTEMS 2008, 2010, 3 : 53 - +
  • [10] From quantum multiplexing to fault-tolerant quantum computing
    Stephens, Ashley
    Nemoto, Kae
    [J]. 2012 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2012,