Electrically controllable chirality in a nanophotonic interface with a two-dimensional semiconductor

被引:26
|
作者
Shreiner, Robert [1 ,2 ]
Hao, Kai [1 ]
Butcher, Amy [1 ]
High, Alexander A. [1 ,3 ,4 ]
机构
[1] Univ Chicago, Pritzker Sch Mol Engn, Chicago, IL 60637 USA
[2] Univ Chicago, Dept Phys, Chicago, IL 60637 USA
[3] Argonne Natl Lab, Ctr Mol Engn, Lemont, IL 60439 USA
[4] Argonne Natl Lab, Mat Sci Div, Lemont, IL 60439 USA
基金
美国国家科学基金会;
关键词
VALLEY POLARIZATION; PHOTON INTERFACE; EXCITON DYNAMICS; MOS2; MONOLAYERS; MOMENTUM;
D O I
10.1038/s41566-022-00971-7
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Researchers demonstrate electrically controllable chirality by exploiting doping-dependent valley polarization of excitonic states in monolayer tungsten diselenide. Chiral nanophotonic interfaces enable propagation direction-dependent interactions between guided optical modes and circularly dichroic materials. Electrical tuning of interface chirality would aid active, switchable non-reciprocity in on-chip optoelectronic and photonic circuitry, but remains an outstanding challenge. Here, we report electrically controllable chirality in a nanophotonic interface with atomically thin monolayer tungsten diselenide (WSe2). Titanium dioxide waveguides are directly fabricated on the surface of low-disorder, boron nitride-encapsulated WSe2. Following integration, photoluminescence from excitonic states into the waveguide can be electrically switched between balanced and directionally biased emission. The operational principle leverages the doping-dependent valley polarization of excitonic states in WSe2. Furthermore, the nanophotonic waveguide can function as a near-field source for diffusive exciton fluxes, which display valley and spin polarizations that are inherited from the interface chirality. Our versatile fabrication approach enables the deterministic integration of photonics with van der Waals heterostructures and could provide optical control over their excitonic and charge-carrier behaviour.
引用
收藏
页码:330 / +
页数:8
相关论文
共 50 条
  • [21] Spin chirality on a two-dimensional frustrated lattice
    Grohol, D
    Matan, K
    Cho, JH
    Lee, SH
    Lynn, JW
    Nocera, DG
    Lee, YS
    NATURE MATERIALS, 2005, 4 (04) : 323 - 328
  • [22] Amplification of chirality in two-dimensional molecular lattices
    Ernst, Karl-Heinz
    CURRENT OPINION IN COLLOID & INTERFACE SCIENCE, 2008, 13 (1-2) : 54 - 59
  • [23] Amplification of chirality in two-dimensional enantiomorphous lattices
    Fasel, R
    Parschau, M
    Ernst, KH
    NATURE, 2006, 439 (7075) : 449 - 452
  • [24] Spin chirality on a two-dimensional frustrated lattice
    Daniel Grohol
    Kittiwit Matan
    Jin-Hyung Cho
    Seung-Hun Lee
    Jeffrey W. Lynn
    Daniel G. Nocera
    Young S. Lee
    Nature Materials, 2005, 4 : 323 - 328
  • [25] Amplification of chirality in two-dimensional enantiomorphous lattices
    Roman Fasel
    Manfred Parschau
    Karl-Heinz Ernst
    Nature, 2006, 439 : 449 - 452
  • [26] Two-dimensional theory of chirality. I. Absolute chirality
    Le Guennec, P
    JOURNAL OF MATHEMATICAL PHYSICS, 2000, 41 (09) : 5954 - 5985
  • [27] Two-dimensional interface acoustic topology for multi-band broadband controllable filtering
    Hu, Congfang
    Luo, Jiangxia
    Liang, Xiao
    Chu, Jiaming
    Liang, Haofeng
    Meng, Daxiang
    Zhang, Zhi
    JOURNAL OF MATERIALS SCIENCE, 2024, 59 (21) : 9384 - 9397
  • [28] Multiphase Controllable Growth and Second Harmonic Enhancement of Two-Dimensional Semiconductor WSe2
    Wang Guang
    Yao Bowen
    Lu Zhiquan
    ACTA OPTICA SINICA, 2024, 44 (04)
  • [29] Graph theoretical descriptors of two-dimensional chirality with possible extension to three-dimensional chirality
    Randic, M
    JOURNAL OF CHEMICAL INFORMATION AND COMPUTER SCIENCES, 2001, 41 (03): : 639 - 649
  • [30] Controllable growth of two-dimensional perovskite microstructures
    Fang, Chen
    Li, Junze
    Wang, Jun
    Chen, Rong
    Wang, Haizhen
    Lan, Shangui
    Xuan, Yining
    Luo, Hongmei
    Fei, Peng
    Li, Dehui
    CRYSTENGCOMM, 2018, 20 (41) : 6538 - 6545