WAVELET-BASED NUMERICAL SCHEME COMPARED WITH VIM FOR SOLVING KAWAHARA EQUATION

被引:0
|
作者
Al-Khaled, Kamel [1 ]
机构
[1] Jordan Univ Sci & Technol, Dept Math & Stat, Irbid 22110, Jordan
关键词
Numerical methods; solitary wave solutions; VIM; wavelets bases; VARIATIONAL ITERATION METHOD; DIFFERENTIAL-OPERATORS; DECOMPOSITION METHOD; ORTHONORMAL BASES; REPRESENTATION;
D O I
10.7546/giq-20-2019-79-87
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper aims to introduce a comparison of variation iteration method and wavelet basis method for the numerical solution of the Kawahara equation. Test problem is used to compare between the two methods. The comparison shows that variation iteration method is efficient and easy to use. On the other hand, the wavelet method is more stable as time increases.
引用
收藏
页码:79 / 87
页数:9
相关论文
共 50 条
  • [31] Wavelet-based lifting scheme for the numerical solution of some class of nonlinear partial differential equations
    Shiralashetti, S. C.
    Angadi, L. M.
    Deshi, A. B.
    [J]. INTERNATIONAL JOURNAL OF WAVELETS MULTIRESOLUTION AND INFORMATION PROCESSING, 2018, 16 (05)
  • [32] Analysis on the weighting factor of wavelet-based watermarking scheme
    Liu, Lili
    Cao, Tianjie
    Lu, Yulong
    Zhang, Hongtai
    [J]. Journal of Computational Information Systems, 2012, 8 (10): : 4285 - 4292
  • [33] Pulsed interference immunity of a wavelet-based modulation scheme
    Orr, RS
    [J]. WAVELET APPLICATIONS III, 1996, 2762 : 490 - 500
  • [34] Wavelet-Based Reversible and Visible Image Watermarking Scheme
    Chen, Chien-Chang
    Tsai, Han-Wei
    [J]. INTELLIGENT SYSTEMS AND APPLICATIONS (ICS 2014), 2015, 274 : 954 - 963
  • [35] Wavelet-Based Subspace Regularization for Solving Highly Nonlinear Inverse Scattering Problems with Contraction Integral Equation
    Zhang, Lu
    Ma, Zhenchao
    Xu, Kuiwen
    Zhong, Yu
    [J]. ELECTRONICS, 2020, 9 (11) : 1 - 16
  • [36] Wavelet-based integral representation for solutions of the wave equation
    Perel, Maria V.
    Sidorenko, Mikhail S.
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2009, 42 (37)
  • [37] Wavelet-based total variation equation image restoration
    Zhao, Dong-Hong
    Wang, Chen-Chen
    [J]. Information Technology Journal, 2013, 12 (23) : 7778 - 7781
  • [38] New wavelet-based adaptive method for the breakage equation
    Liu, Y
    Tadé, MO
    [J]. POWDER TECHNOLOGY, 2004, 139 (01) : 61 - 68
  • [39] A Wavelet-based Watermarking Scheme Using Double Wavelet Tree Energy Modulation
    Tsai, Min-Jen
    Lin, Ching-Ting
    Liu, Jung
    [J]. 2008 15TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, VOLS 1-5, 2008, : 417 - 420
  • [40] A numerical scheme for solving a periodically forced Reynolds equation
    Garratt, J. E.
    Cliffe, K. A.
    Hibberd, S.
    Power, H.
    [J]. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2011, 67 (05) : 559 - 580