VARIATIONAL INFERENCE FOR CONDITIONAL RANDOM FIELDS

被引:3
|
作者
Liao, Chih-Pin [1 ]
Chien, Jen-Tzung [1 ]
机构
[1] Natl Cheng Kung Univ, Dept Comp Sci & Informat Engn, Tainan 70101, Taiwan
关键词
Variational methods; learning systems; pattern recognition; video signal processing; MODELS;
D O I
10.1109/ICASSP.2010.5495215
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
Conditional random fields (CRFs) have been popular for contextual pattern classification. This paper presents two variational inference methods for direct approximation of a conditional probability instead of indirect calculation through Viterbi approximation of a marginal probability. The CRFs with the factorized variational inference (FVI) and the structured variational inference (SVI) are proposed and investigated for human motion recognition. In general, FVI assumes a factorization of variational distributions of individual states for representation of conditional probability while SVI preserves the state structure in the variational distribution. In the experiments on using IDIAP human motion database, we found that CRFs using variation inference methods performed better than baseline CRFs using Viterbi approximation. CRFs with SVI obtained higher classification accuracy than those with FVI.
引用
收藏
页码:2002 / 2005
页数:4
相关论文
共 50 条
  • [41] Conditional Simulation of Random Fields by Successive Residuals
    J. A. Vargas-Guzmán
    R. Dimitrakopoulos
    [J]. Mathematical Geology, 2002, 34 : 597 - 611
  • [42] A note on random fields forming conditional bases
    Bansal, N
    Hamedani, GG
    Zhang, H
    [J]. STATISTICS & PROBABILITY LETTERS, 2000, 50 (04) : 397 - 400
  • [43] Motion Clustering and Estimation with Conditional Random Fields
    Tipaldi, Gian Diego
    Ramos, Fabio
    [J]. 2009 IEEE-RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS, 2009, : 872 - 877
  • [44] Gaussian Conditional Random Fields for Face Recognition
    Smereka, Jonathon M.
    Kumar, B. V. K. Vijaya
    Rodriguez, Andres
    [J]. PROCEEDINGS OF 29TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS, (CVPRW 2016), 2016, : 155 - 162
  • [45] Utterance Segmentation Using Conditional Random Fields
    Ben Dbabis, Samira
    Reguii, Boutheina
    Ghorbel, Hatem
    Belguith, Lamia Hadrich
    [J]. INNOVATION MANAGEMENT AND EDUCATION EXCELLENCE VISION 2020: FROM REGIONAL DEVELOPMENT SUSTAINABILITY TO GLOBAL ECONOMIC GROWTH, VOLS I - VI, 2016, : 3420 - 3426
  • [46] Polynomial Conditional Random Fields for signal processing
    Do, Trinh-Minh-Tri
    Artieres, Thierry
    [J]. ECAI 2006, PROCEEDINGS, 2006, 141 : 797 - +
  • [47] Conditional simulation of random fields by successive residuals
    Vargas-Guzmán, JA
    Dimitrakopoulos, R
    [J]. MATHEMATICAL GEOLOGY, 2002, 34 (05): : 597 - 611
  • [48] Interactive Image Segmentation with Conditional Random Fields
    Geng, Xiaowei
    Zhao, Jieyu
    [J]. ICNC 2008: FOURTH INTERNATIONAL CONFERENCE ON NATURAL COMPUTATION, VOL 2, PROCEEDINGS, 2008, : 96 - +
  • [49] Conditional random fields for transmembrane helix prediction
    Lukov, L
    Chawla, S
    Church, WB
    [J]. ADVANCES IN KNOWLEDGE DISCOVERY AND DATA MINING, PROCEEDINGS, 2005, 3518 : 155 - 161
  • [50] Curb Reconstruction using Conditional Random Fields
    Siegemund, Jan
    Pfeiffer, David
    Franke, Uwe
    Foerstner, Wolfgang
    [J]. 2010 IEEE INTELLIGENT VEHICLES SYMPOSIUM (IV), 2010, : 203 - 210