VARIATIONAL INFERENCE FOR CONDITIONAL RANDOM FIELDS

被引:3
|
作者
Liao, Chih-Pin [1 ]
Chien, Jen-Tzung [1 ]
机构
[1] Natl Cheng Kung Univ, Dept Comp Sci & Informat Engn, Tainan 70101, Taiwan
关键词
Variational methods; learning systems; pattern recognition; video signal processing; MODELS;
D O I
10.1109/ICASSP.2010.5495215
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
Conditional random fields (CRFs) have been popular for contextual pattern classification. This paper presents two variational inference methods for direct approximation of a conditional probability instead of indirect calculation through Viterbi approximation of a marginal probability. The CRFs with the factorized variational inference (FVI) and the structured variational inference (SVI) are proposed and investigated for human motion recognition. In general, FVI assumes a factorization of variational distributions of individual states for representation of conditional probability while SVI preserves the state structure in the variational distribution. In the experiments on using IDIAP human motion database, we found that CRFs using variation inference methods performed better than baseline CRFs using Viterbi approximation. CRFs with SVI obtained higher classification accuracy than those with FVI.
引用
收藏
页码:2002 / 2005
页数:4
相关论文
共 50 条
  • [1] Variational Infinite Hidden Conditional Random Fields
    Bousmalis, Konstantinos
    Zafeiriou, Stefanos
    Morency, Louis-Philippe
    Pantic, Maja
    Ghahramani, Zoubin
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2015, 37 (09) : 1917 - 1929
  • [2] Efficient inference in large conditional random fields
    Cohn, Trevor
    [J]. MACHINE LEARNING: ECML 2006, PROCEEDINGS, 2006, 4212 : 606 - 613
  • [3] Blending Learning and Inference in Conditional Random Fields
    Hazan, Tamir
    Schwing, Alexander G.
    Urtasun, Raquel
    [J]. JOURNAL OF MACHINE LEARNING RESEARCH, 2016, 17
  • [4] Variational Hidden Conditional Random Fields with Beta Processes
    Luo, Chen
    Sun, Shiliang
    Zhao, Jing
    [J]. 2017 13TH INTERNATIONAL CONFERENCE ON NATURAL COMPUTATION, FUZZY SYSTEMS AND KNOWLEDGE DISCOVERY (ICNC-FSKD), 2017,
  • [5] Variational conditional random fields for online speaker detection and tracking
    Moattar, M. H.
    Homayounpour, M. M.
    [J]. SPEECH COMMUNICATION, 2012, 54 (06) : 763 - 780
  • [6] COMPARING INFERENCE METHODS FOR CONDITIONAL RANDOM FIELDS FOR HYPERSPECTRAL IMAGE CLASSIFICATION
    Hu, Yang
    Monteiro, Sildomar T.
    Saber, Eli
    [J]. 2015 7TH WORKSHOP ON HYPERSPECTRAL IMAGE AND SIGNAL PROCESSING: EVOLUTION IN REMOTE SENSING (WHISPERS), 2015,
  • [7] On Learning Conditional Random Fields for StereoExploring Model Structures and Approximate Inference
    Christopher J. Pal
    Jerod J. Weinman
    Lam C. Tran
    Daniel Scharstein
    [J]. International Journal of Computer Vision, 2012, 99 : 319 - 337
  • [8] Calibration of conditional composite likelihood for Bayesian inference on Gibbs random fields
    Stoehr, Julien
    Friel, Nial
    [J]. ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 38, 2015, 38 : 921 - 929
  • [9] On Learning Conditional Random Fields for Stereo Exploring Model Structures and Approximate Inference
    Pal, Christopher J.
    Weinman, Jerod J.
    Tran, Lam C.
    Scharstein, Daniel
    [J]. INTERNATIONAL JOURNAL OF COMPUTER VISION, 2012, 99 (03) : 319 - 337
  • [10] EFFICIENT BAYESIAN INFERENCE USING FULLY CONNECTED CONDITIONAL RANDOM FIELDS WITH STOCHASTIC CLIQUES
    Shafiee, M. J.
    Wong, A.
    Siva, P.
    Fieguth, P.
    [J]. 2014 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2014, : 4289 - 4293