Tensor Envelope Partial Least-Squares Regression

被引:39
|
作者
Zhang, Xin [1 ]
Li, Lexin [2 ]
机构
[1] Florida State Univ, Dept Stat, Tallahassee, FL 32306 USA
[2] Univ Calif Berkeley, Div Biostat, Berkeley, CA 94720 USA
基金
美国国家科学基金会;
关键词
Dimension reduction; Multidimensional array; Neuroimaging analysis; Partial least squares; Reduced rank regression; Sparsity principle;
D O I
10.1080/00401706.2016.1272495
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Partial least squares (PLS) is a prominent solution for dimension reduction and high-dimensional regressions. Recent prevalence of multidimensional tensor data has led to several tensor versions of the PLS algorithms. However, none offers a population model and interpretation, and statistical properties of the associated parameters remain intractable. In this article, we first propose a new tensor partial least-squares algorithm, then establish the corresponding population interpretation. This population investigation allows us to gain new insight on how the PLS achieves effective dimension reduction, to build connection with the notion of sufficient dimension reduction, and to obtain the asymptotic consistency of the PLS estimator. We compare our method, both analytically and numerically, with some alternative solutions. We also illustrate the efficacy of the new method on simulations and two neuroimaging data analyses. Supplementary materials for this article are available online.
引用
收藏
页码:426 / 436
页数:11
相关论文
共 50 条
  • [1] Kernel partial least-squares regression
    Bai Yifeng
    Xiao Han
    Yu Long
    [J]. 2006 IEEE INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORK PROCEEDINGS, VOLS 1-10, 2006, : 1231 - +
  • [2] PARTIAL LEAST-SQUARES REGRESSION - A TUTORIAL
    GELADI, P
    KOWALSKI, BR
    [J]. ANALYTICA CHIMICA ACTA, 1986, 185 : 1 - 17
  • [4] Orthogonal Nonlinear partial least-squares regression
    Doymaz, F
    Palazoglu, A
    Romagnoli, JA
    [J]. INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2003, 42 (23) : 5836 - 5849
  • [5] PoLiSh - smoothed partial least-squares regression
    Rutledge, DN
    Barros, A
    Delgadillo, I
    [J]. ANALYTICA CHIMICA ACTA, 2001, 446 (1-2) : 281 - 296
  • [6] Partial least-squares Regression with Unlabeled Data
    Gujral, Paman
    Wise, Barry
    Amrhein, Michael
    Bonvin, Dominique
    [J]. PLS '09: PROCEEDINGS OF THE 6TH INTERNATIONAL CONFERENCE ON PARTIAL LEAST SQUARES AND RELATED METHODS, 2009, : 102 - 105
  • [7] A TEST OF SIGNIFICANCE FOR PARTIAL LEAST-SQUARES REGRESSION
    WAKELING, IN
    MORRIS, JJ
    [J]. JOURNAL OF CHEMOMETRICS, 1993, 7 (04) : 291 - 304
  • [8] RECURSIVE ALGORITHM FOR PARTIAL LEAST-SQUARES REGRESSION
    HELLAND, K
    BERNTSEN, HE
    BORGEN, OS
    MARTENS, H
    [J]. CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 1992, 14 (1-3) : 129 - 137
  • [9] A REFORMULATION OF THE PARTIAL LEAST-SQUARES REGRESSION ALGORITHM
    YOUNG, PJ
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1994, 15 (01): : 225 - 230
  • [10] PARTIAL LEAST-SQUARES AND CLASSIFICATION AND REGRESSION TREES
    YEH, CH
    SPIEGELMAN, CH
    [J]. CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 1994, 22 (01) : 17 - 23