Information Content of Spectral Vegetation Indices for Assessing the Weed Infestation of Crops Using Ground-Based and Satellite Data

被引:2
|
作者
Pisman, T., I [1 ]
Erunova, M. G. [2 ]
Botvich, I. Yu [1 ]
Emelyanov, D., V [1 ]
Kononova, N. A. [1 ]
Bobrovsky, A., V [3 ]
Kryuchkov, A. A. [3 ]
Shpedt, A. A. [3 ]
Shevyrnogov, A. P. [1 ]
机构
[1] Russian Acad Sci, Inst Biophys, Siberian Branch, Krasnoyarsk, Russia
[2] Russian Acad Sci, Fed Res Ctr, Siberian Branch, Krasnoyarsk Sci Ctr, Krasnoyarsk, Russia
[3] Russian Acad Sci, Fed Res Ctr, Krasnoyarsk Sci Res Inst Agr, Siberian Branch,Krasnoyarsk Sci Ctr, Krasnoyarsk, Russia
关键词
vegetation indices; PlanetScope; ground-based spectrometry; geobotanical studies; wheat crops; Krasnoyarsk krai; DIFFERENTIATION; REFLECTANCE;
D O I
10.1134/S0001433821090577
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
This paper presents the results of a study assessing the degree of weed infestation of wheat crops. They are obtained using optical ground-based and satellite spectral data with a 3-m spatial resolution from PlanetScope Dove satellites for 2019. The vegetation indices, including the normalized difference vegetation index (NDVI), the relative chlorophyll index (Chlorophyll Index Green-ClGreen or GCI), the modified soil-adjusted vegetation index (MSAVI2), and the visible atmospherically resistant index (VARI) are used in the interpretation of ground-based spectrometric and space images. This paper indicates the possibility of assessing the degree of weed infestation of agricultural fields. The higher the weed infestation, the lower the index values. The dynamics of VARI is found to be different from the dynamics of NDVI, ClGreen, and MSAVI2 during the growing season. The strong correlation between NDVI, ClGreen, and MSAVI2 and the weak correlation between VARI and other indices are observed. The possibility of identifying weedy sites in the agricultural fields is shown using the spatial distribution map of ClGreen dated August 2, 2019.
引用
收藏
页码:1188 / 1197
页数:10
相关论文
共 50 条
  • [21] Estimating corn nitrogen status using ground-based and satellite multispectral data
    Bausch, WC
    Diker, K
    Khosla, R
    Paris, JF
    REMOTE SENSING AND MODELING OF ECOSYSTEMS FOR SUSTAINABILITY, 2004, 5544 : 489 - 498
  • [22] Potential of Satellite Spectral Resolution Vegetation Indices for Estimation of Canopy Chlorophyll Content of Field Crops: Mitigating Effects of Leaf Angle Distribution
    Zou, Xiaochen
    Jin, Jun
    Mottus, Matti
    REMOTE SENSING, 2023, 15 (05)
  • [23] Forecasting grain yields of winter crops in Kherson oblast using satellite-based vegetation indices
    Lykhovyd, Pavlo
    Lavrenko, Sergiy
    Lavrenko, Nataliia
    BIOSCIENCE RESEARCH, 2020, 17 (03): : 1912 - 1920
  • [24] Evaluation of the potential of MODIS satellite data to predict vegetation phenology in different biomes: An investigation using ground-based NDVI measurements
    Hmimina, G.
    Dufrene, E.
    Pontailler, J. -Y
    Delpierre, N.
    Aubinet, M.
    Caquet, B.
    de Grandcourt, A.
    Burban, B.
    Flechard, C.
    Granier, A.
    Gross, P.
    Heinesch, B.
    Longdoz, B.
    Moureaux, C.
    Ourcival, J. -M.
    Rambal, S.
    Saint Andre, L.
    Soudani, K.
    REMOTE SENSING OF ENVIRONMENT, 2013, 132 : 145 - 158
  • [25] Effects of hyperspectral data with different spectral resolutions on the estimation of soil heavy metal content: From ground-based and airborne data to satellite-simulated data
    Wang, Yibo
    Zhang, Xia
    Sun, Weichao
    Wang, Jinnian
    Ding, Songtao
    Liu, Senhao
    SCIENCE OF THE TOTAL ENVIRONMENT, 2022, 838
  • [26] Wheat Crop Chlorophyll Content Estimation From Ground-Based Reflectance Using Chlorophyll Indices
    Bannari, A.
    Khurshid, K. S.
    Staenz, K.
    Schwarz, J.
    2006 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, VOLS 1-8, 2006, : 112 - +
  • [27] REMOTE SENSING OF WATER VAPOR CONTENT USING GROUND-BASED GPS DATA
    LIU Yanxiong CHEN Yongqi LIU JingnanLIU Yanxiong
    Geo-Spatial Information Science , 2000, (03) : 64 - 68
  • [28] Combining ground-based measurements and MODIS-based spectral vegetation indices to track biomass accumulation in post-fire chaparral
    Uyeda, Kellie A.
    Stow, Douglas A.
    Roberts, Dar A.
    Riggan, Philip J.
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2017, 38 (03) : 728 - 741
  • [29] Seasonal Dependence of Aerosol Data Assimilation and Forecasting Using Satellite and Ground-Based Observations
    Lee, Seunghee
    Kim, Ganghan
    Lee, Myong-In
    Choi, Yonghan
    Song, Chang-Keun
    Kim, Hyeon-Kook
    REMOTE SENSING, 2022, 14 (09)
  • [30] A technique for mapping downward longwave radiation using satellite and ground-based data in the tropics
    Masiri, I.
    Janjai, S.
    Nunez, M.
    Anusasananan, P.
    RENEWABLE ENERGY, 2017, 103 : 171 - 179