Unique ergodicity for foliations in P2 with an invariant curve

被引:0
|
作者
Dinh, Tien-Cuong [1 ]
Sibony, Nessim [2 ]
机构
[1] Natl Univ Singapore, Dept Math, 10 Lower Kent Ridge Rd, Singapore 119076, Singapore
[2] Univ Paris Saclay, Univ Paris Sud, CNRS, Lab Math Orsay, F-91405 Orsay, France
关键词
HARMONIC CURRENTS; EQUATION; MAPS; EQUIDISTRIBUTION; LAMINATIONS; EXTENSION; POINTS;
D O I
10.1007/s00222-017-0744-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Consider a foliation in the projective plane admitting a projective line as the unique invariant algebraic curve. Assume that the foliation is generic in the sense that its singular points are hyperbolic. We show that there is a unique positive dd(c)-closed (1, 1)-current of mass 1 which is directed by the foliation and this is the current of integration on the invariant line. A unique ergodicity theorem for the distribution of leaves follows: for any leaf L, appropriate averages of L converge to the current of integration on the invariant line. The result uses an extension of our theory of densities for currents. Foliations on compact Kahler surface with one or more invariant curves are also considered.
引用
收藏
页码:1 / 38
页数:38
相关论文
共 50 条
  • [42] P2/sustainability
    Quinn, B
    POLLUTION ENGINEERING, 2002, 34 (08) : 38 - 39
  • [43] The P2 experiment
    Becker, Dominik
    Bucoveanu, Razvan
    Grzesik, Carsten
    Imai, Kathrin
    Kempf, Ruth
    Molitor, Matthias
    Tyukin, Alexey
    Zimmermann, Marco
    Armstrong, David
    Aulenbacher, Kurt
    Baunack, Sebastian
    Beminiwattha, Rakitha
    Berger, Niklaus
    Bernhard, Peter
    Brogna, Andrea
    Capozza, Luigi
    Dusa, Silviu Covrig
    Deconinck, Wouter
    Diefenbach, Juergen
    Dunne, James
    Erler, Jens
    Gal, Ciprian
    Gericke, Michael
    Glaeser, Boris
    Gorchtein, Mikhail
    Gou, Boxing
    Gradl, Wolfgang
    Imai, Yoshio
    Kumar, Krishna S.
    Maas, Frank
    Mammei, Juliette
    Pan, Jie
    Pandey, Preeti
    Paschke, Kent
    Peric, Ivan
    Pitt, Mark
    Rahman, Sakib
    Riordan, Seamus
    Pineiro, David Rodriguez
    Sfienti, Concettina
    Sorokin, Iurii
    Souder, Paul
    Spiesberger, Hubert
    Thiel, Michaela
    Tyukin, Valery
    Weitzel, Quirin
    EUROPEAN PHYSICAL JOURNAL A, 2018, 54 (11):
  • [44] P2 on the Internet
    不详
    JOURNAL OF ENVIRONMENTAL HEALTH, 1996, 58 (09) : 30 - 31
  • [45] Hydrophobicity in the design of P2/P2' tetrahydropyrimidinone HIV protease inhibitors
    Garg, R
    Patel, D
    BIOORGANIC & MEDICINAL CHEMISTRY LETTERS, 2005, 15 (16) : 3767 - 3770
  • [46] Special foliations on CP2 with a unique singular point
    Alcantara, Claudia R.
    RESEARCH IN THE MATHEMATICAL SCIENCES, 2022, 9 (01)
  • [47] Remarks on Foliations on CP2 with a Unique Singular Point
    Alcantara, Claudia R.
    Mozo-Fernandez, Jorge
    BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY, 2024, 55 (04):
  • [48] ON CONGRUENCE 2P=2 (P2)
    HAUSNER, M
    SACHS, D
    AMERICAN MATHEMATICAL MONTHLY, 1963, 70 (09): : 996 - &
  • [49] Quantum unique ergodicity for SL2(Z)\H
    Soundararajan, Kannan
    ANNALS OF MATHEMATICS, 2010, 172 (02) : 1529 - 1538
  • [50] ON THE UNIQUE ERGODICITY FOR A CLASS OF 2 DIMENSIONAL STOCHASTIC WAVE EQUATIONS
    Forlano, Justin
    Tolomeo, Leonardo
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2024, 377 (01) : 345 - 394