Collaborative Automated Driving: A Machine Learning-based Method to Enhance the Accuracy of Shared Information

被引:0
|
作者
Rawashdeh, Zaydoun Yahya [1 ]
Wang, Zheng [2 ]
机构
[1] DENSO Int Amer Inc, North Amer Res & Dev, Southfield, MI 48033 USA
[2] Univ Michigan, Elect Engn & Comp Sci, Ann Arbor, MI 48109 USA
关键词
Collaborative automated driving; Perception; Machine Learning; Object classification; Object tracking; V2V;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The perception range of the automated vehicles is limited to the line-of-sight field of view of their on-board sensors (e.g., Cameras, Radars). The aim of Collaborative automated driving is extending automated vehicles' sensors field of view to go beyond their immediate proximity, thus mitigating perception limitations. Using this technology, vehicles extract the information of objects in their surroundings, and share it with others via DSRC V2V communication. Shared information will assist the receiving vehicles in creating extended view of their surroundings. Shared information should contain the min set of attributes that best describe the shared object. It should also be descriptive enough to provide the necessary information to fulfill safety/nonsafety applications requirements. The set should contain positional, motion and dimensional information. Accurate positional and dimensional information are not easily extractable in all driving scenarios. This paper proposes a machine learning-based approach integrated to the object tracking system, and capable of classifying and extracting 3D information of the objects considered for sharing. This method provides the dimension and the location of the center point of the tracked object as required by V2V communication. The results show the system is able to provide accurate positional and dimensional information.
引用
收藏
页码:3961 / 3966
页数:6
相关论文
共 50 条
  • [31] Improving accuracy of early dental carious lesions detection using deep learning-based automated method
    Portella, Paula Dresch
    de Oliveira, Lucas Ferrari
    Ferreira, Mateus Felipe de Cassio
    Dias, Bruna Cristine
    de Souza, Juliana Feltrin
    Assuncao, Luciana Reichert da Silva
    CLINICAL ORAL INVESTIGATIONS, 2023, 27 (12) : 7663 - 7670
  • [32] Automatic learning-based data optimization method for autonomous driving
    Wang, Yang
    Zhang, Jin
    Chen, Yihao
    Yuan, Hao
    Wu, Cheng
    DIGITAL SIGNAL PROCESSING, 2024, 148
  • [33] Using singular spectrum analysis and empirical mode decomposition to enhance the accuracy of a machine learning-based soil moisture forecasting
    Murcia, Eduart
    Guzman, Sandra M.
    COMPUTERS AND ELECTRONICS IN AGRICULTURE, 2024, 224
  • [34] A Machine Learning-Based Method for Detecting Liver Fibrosis
    Suarez, Miguel
    Martinez, Raquel
    Torres, Ana Maria
    Ramon, Antonio
    Blasco, Pilar
    Mateo, Jorge
    DIAGNOSTICS, 2023, 13 (18)
  • [35] A machine learning-based underwater noise classification method
    Song, Guoli
    Guo, Xinyi
    Wang, Wenbo
    Ren, Qunyan
    Li, Jun
    Ma, Li
    APPLIED ACOUSTICS, 2021, 184
  • [36] Machine Learning-Based Method for Structural Damage Detection
    Irawan, Daniel
    Morozov, Evgeny V.
    Tahtali, Murat
    DATA SCIENCE IN ENGINEERING, VOL. 10, IMAC 2024, 2025, : 137 - 142
  • [37] A Machine Learning-Based Wrapper Method for Feature Selection
    Patel, Damodar
    Saxena, Amit
    Wang, John
    INTERNATIONAL JOURNAL OF DATA WAREHOUSING AND MINING, 2024, 20 (01)
  • [38] Machine Learning-Based Attack Detection Method in Hadoop
    Li, Ningwei
    Gao, Hang
    Liu, Liang
    Peng, Jianfei
    ALGORITHMS AND ARCHITECTURES FOR PARALLEL PROCESSING, ICA3PP 2020, PT III, 2020, 12454 : 184 - 196
  • [39] A Machine Learning-based Method for Cyber Risk Assessment
    Rafaiani, Giulia
    Battaglioni, Massimo
    Compagnoni, Simone
    Senigagliesi, Linda
    Chiaraluce, Franco
    Baldi, Marco
    2023 IEEE 36TH INTERNATIONAL SYMPOSIUM ON COMPUTER-BASED MEDICAL SYSTEMS, CBMS, 2023, : 263 - 268
  • [40] Machine Learning-Based Automated Fault Detection and Diagnostics in Building Systems
    Nelson, William
    Dieckert, Christopher
    ENERGIES, 2024, 17 (02)