A Constructing Method of Fuzzy Classifier Using Kernel K-means Clustering Algorithm

被引:0
|
作者
Yang, Aimin [1 ]
Li, Qing [2 ]
Li, Xinguang [1 ]
机构
[1] Guangdong Univ Foreign Studies, Sch Informat, Guangzhou, Guangdong, Peoples R China
[2] Guangdong Univ Foreign Studies, Sch Business, Guangzhou, Guangdong, Peoples R China
关键词
fuzzy classifier; kernel k-means clustering; triangle membership function; genetic algorithms; fuzzy rule; FEATURE SPACE;
D O I
10.1109/KAM.2009.5
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
A constructing method of fuzzy classifier using kernel k-means clustering algorithm is instroduced in this paper. This constructing method are divided into three phases,namely clustering phase,fuzzy rule created phanse and parameters modified phase. firstly, the original sample space is mapped into a high dimensional feature space by selecting appropriate kernel function. In the feature space, training samples are grouped into some clusters by kernel k-means clustering algorithm. Then for each created cluster, a fuzzy rule is defined whith the appropriate membership function. Finally, Some parameters of fuzzy classifier are chosen by GAs. The experiment results show the proposed fuzzy classifer has very high classification accuracy by the the comparision results with the similar approach,and has the better applied values.
引用
收藏
页码:73 / +
页数:2
相关论文
共 50 条
  • [41] Improving the Walktrap Algorithm Using K-Means Clustering
    Brusco, Michael
    Steinley, Douglas
    Watts, Ashley L.
    MULTIVARIATE BEHAVIORAL RESEARCH, 2024, 59 (02) : 266 - 288
  • [42] Optimization of K-Means clustering Using Genetic Algorithm
    Irfan, Shadab
    Dwivedi, Gaurav
    Ghosh, Subhajit
    2017 INTERNATIONAL CONFERENCE ON COMPUTING AND COMMUNICATION TECHNOLOGIES FOR SMART NATION (IC3TSN), 2017, : 157 - 162
  • [43] Colour Constancy using K-means Clustering Algorithm
    Hussain, Md. Akmol
    Akbari, Akbar Sheikh
    Ghaffari, Ahmad
    2016 9TH INTERNATIONAL CONFERENCE ON DEVELOPMENTS IN ESYSTEMS ENGINEERING (DESE 2016), 2016, : 283 - 288
  • [44] RACK: RApid Clustering using K-means algorithm
    Garg, Vikas K.
    Murty, M. N.
    2009 IEEE INTERNATIONAL CONFERENCE ON AUTOMATION SCIENCE AND ENGINEERING, 2009, : 621 - 626
  • [45] Image Segmentation using K-means Clustering Algorithm and Subtractive Clustering Algorithm
    Dhanachandra, Nameirakpam
    Manglem, Khumanthem
    Chanu, Yambem Jina
    ELEVENTH INTERNATIONAL CONFERENCE ON COMMUNICATION NETWORKS, ICCN 2015/INDIA ELEVENTH INTERNATIONAL CONFERENCE ON DATA MINING AND WAREHOUSING, ICDMW 2015/NDIA ELEVENTH INTERNATIONAL CONFERENCE ON IMAGE AND SIGNAL PROCESSING, ICISP 2015, 2015, 54 : 764 - 771
  • [46] Optimization of K-means clustering method using hybrid capuchin search algorithm
    Amjad Qtaish
    Malik Braik
    Dheeb Albashish
    Mohammad T. Alshammari
    Abdulrahman Alreshidi
    Eissa Jaber Alreshidi
    The Journal of Supercomputing, 2024, 80 : 1728 - 1787
  • [47] Optimization of K-means clustering method using hybrid capuchin search algorithm
    Qtaish, Amjad
    Braik, Malik
    Albashish, Dheeb
    Alshammari, Mohammad T. T.
    Alreshidi, Abdulrahman
    Alreshidi, Eissa Jaber
    JOURNAL OF SUPERCOMPUTING, 2024, 80 (02): : 1728 - 1787
  • [48] A method for initialising the K-means clustering algorithm using kd-trees
    Redmond, Stephen J.
    Heneghan, Conor
    PATTERN RECOGNITION LETTERS, 2007, 28 (08) : 965 - 973
  • [49] KERNEL MATRIX TRIMMING FOR IMPROVED KERNEL K-MEANS CLUSTERING
    Tsapanos, Nikolaos
    Tefas, Anastasios
    Nikolaidis, Nikolaos
    Pitas, Ioannis
    2015 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2015, : 2285 - 2289
  • [50] Adaptive Fuzzy Moving K-means Clustering Algorithm for Image Segmentation
    Isa, Nor Ashidi Mat
    Salamah, Samy A.
    Ngah, Umi Kalthum
    IEEE TRANSACTIONS ON CONSUMER ELECTRONICS, 2009, 55 (04) : 2145 - 2153