Joint matricial range and joint congruence matricial range of operators

被引:0
|
作者
Lau, Pan-Shun [1 ]
Li, Chi-Kwong [2 ]
Poon, Yiu-Tung [3 ,4 ]
Sze, Nung-Sing [5 ]
机构
[1] Univ Nevada, Dept Math & Stat, Reno, NV 89557 USA
[2] Coll William & Mary, Dept Math, Williamsburg, VA 23185 USA
[3] Iowa State Univ, Dept Math, Ames, IA 50011 USA
[4] Ctr Quantum Comp, Peng Cheng Lab, Shenzhen 518055, Peoples R China
[5] Hong Kong Polytech Univ, Dept Appl Math, Hung Hom, Hong Kong, Peoples R China
关键词
Congruence numerical range; Star-shaped; Convex; Compact perturbation; GENERALIZED NUMERICAL RANGES; CONVEXITY;
D O I
10.1007/s43036-019-00009-w
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let A = (A(1), ..., A(m)), where A(1), ..., A(m) are n x n real matrices. The real joint (p, q)-matricial range of A, Lambda(R)(p,q) (A), is the set of m-tuple of q x q real matrices (B-1, ..., B-m) such that (X* A(1)X, ..., X* A(m) X) = (I-p circle times B-1, ..., I-p circle times B-m) for some real n x pq matrix X satisfying X* X = I-pq. It is shown that if n is sufficiently large, then the set Lambda(R)(p,q) (A) is non-empty and star-shaped. The result is extended to bounded linear operators acting on a real Hilbert space H, and used to show that the joint essential (p, q)-matricial range of A is always compact, convex, and non-empty. Similar results for the joint congruence matricial ranges on complex operators are also obtained.
引用
收藏
页码:609 / 626
页数:18
相关论文
共 50 条
  • [31] TENSOR PRODUCTS AND JOINT NUMERICAL RANGE
    DASH, AT
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1972, 19 (04): : A522 - &
  • [32] The Influence of Menthol on Joint Range of Motion
    Staffiere, William
    Gillis, Jason
    Varnell, Michelle
    Gallo, Joseph
    Silva, Kevin
    Moriarty, Jacob
    MEDICINE AND SCIENCE IN SPORTS AND EXERCISE, 2019, 51 (06): : 51 - 51
  • [33] Functional range of motion of the hip joint
    Adam, P.
    Beguin, L.
    Grosclaude, S.
    Jobard, B.
    Fessy, M. -H.
    REVUE DE CHIRURGIE ORTHOPEDIQUE ET REPARATRICE DE L APPAREIL MOTEUR, 2008, 94 (04): : 382 - 391
  • [34] The range of axial rotation of the glenohumeral joint
    Southgate, Dominic F. L.
    Hill, Adam M.
    Alexander, Susan
    Wallace, Andrew L.
    Hansen, Ulrich N.
    Bull, Anthony M. J.
    JOURNAL OF BIOMECHANICS, 2009, 42 (09) : 1307 - 1312
  • [35] TENSOR PRODUCTS AND JOINT NUMERICAL RANGE
    DASH, AT
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1973, 40 (02) : 521 - 526
  • [36] Computing the Joint Range of a Set of Expectations
    Geyer, Charles J.
    Lazar, Radu C.
    Meeden, Glen D.
    ISIPTA 05-PROCEEDINGS OF THE FOURTH INTERNATIONAL SYMPOSIUM ON IMPRECISE PROBABILITIES AND THEIR APPLICATIONS, 2005, : 165 - 172
  • [37] Joint Range of f-divergences
    Harremoes, Peter
    Vajda, Igor
    2010 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY, 2010, : 1345 - 1349
  • [38] The joint essential maximal numerical range
    El-Adawy, TM
    APPLIED MATHEMATICS AND COMPUTATION, 2004, 148 (03) : 793 - 799
  • [39] A note on the boundary of the joint numerical range
    Chan, Jor-Ting
    LINEAR & MULTILINEAR ALGEBRA, 2018, 66 (04): : 821 - 826
  • [40] RANGE OF APPLICATIONS FOR CT JOINT DIAGNOSTICS
    HULS, A
    WALTER, E
    SUSS, C
    DEUTSCHE ZAHNARZTLICHE ZEITSCHRIFT, 1984, 39 (12): : 933 - 938