Mars Exploration Rover transverse impulse rocket cover thermal protection system design verification

被引:1
|
作者
Szalai, C
Chen, YK
Loomis, M
Thoma, B
Buck, S
机构
[1] NASA, Ames Res Ctr, Thermal Protect Mat & Syst Branch, Moffett Field, CA 94035 USA
[2] CALTECH, Jet Prop Lab, Pasadena, CA 91109 USA
[3] NASA, Ames Res Ctr, Thermal Protect Mat & Syst Branch, Moffett Field, CA 94035 USA
关键词
D O I
10.2514/1.3637
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
Arc jet test results are summarized of the Mars Exploration Rover silicone-impregnated reusable ceramic ablator (SIRCA) transverse impulse rocket system (TIRS) cover test series in the Panel Test facility at NASA Ames Research Center. The primary objective of this arc jet test series was to evaluate design details of the SIRCA TIRS cover interface to the aeroshell under simulated atmospheric entry heating conditions. Four test articles were tested in an arc jet environment with three different seal configurations. The test condition was designed to match the predicted peak flight heat load at the gap region between the SIRCA and the backshell and resulted in an overtest for the apex region of the SIRCA TIRS cover. Repeatable thermocouple data were obtained and compared with SIRCA thermal response analyses. The one-dimensional thermal response prediction compared well with the thermocouple data for the location at the backshell interface. For the apex region of the SIRCA TIRS cover, a one-dimensional thermal response analysis resulted in an overprediction because there were strong multidimensional conduction effects due to the TIRS cover geometry. In general, the test results provide strong experimental evidence that supports the adequacy of the baseline seal design.
引用
收藏
页码:990 / 998
页数:9
相关论文
共 50 条
  • [31] Design, Testing, and Evolution of Mars Rover Testbeds: European Space Agency Planetary Exploration
    Azkarate, Martin
    Gerdes, Levin
    Wiese, Tim
    Zwick, Martin
    Pagnamenta, Marco
    Hidalgo-Carrio, Javier
    Poulakis, Pantelis
    Perez-del-Pulgar, Carlos J.
    IEEE ROBOTICS & AUTOMATION MAGAZINE, 2022,
  • [32] Mars Exploration Rover mobility development - Mechanical mobility hardware design, development, and testing
    Lindemann, Randel A.
    Bickler, Donald B.
    Harrington, Brian D.
    Ortiz, Gary M.
    Voorhees, Christopher J.
    IEEE ROBOTICS & AUTOMATION MAGAZINE, 2006, 13 (02) : 19 - 26
  • [33] A Thermal Inertia Inversion Model for Mars Surface Exploration and Experimental Verification
    Xing Y.
    Chang S.
    Hu H.
    Jia Y.
    He J.
    Yuhang Xuebao/Journal of Astronautics, 2023, 44 (08): : 1261 - 1266
  • [34] Verification and Validation of the Mars Science Laboratory/Curiosity Rover Entry, Descent, and Landing System
    Kornfeld, Richard P.
    Prakash, Ravi
    Devereaux, Ann S.
    Greco, Martin E.
    Hannon, Corey C.
    Kipp, Devin M.
    JOURNAL OF SPACECRAFT AND ROCKETS, 2014, 51 (04) : 1251 - 1269
  • [35] VERIFICATION AND VALIDATION OF THE MARS SCIENCE LABORATORY/CURIOSITY ROVER ENTRY DESCENT AND LANDING SYSTEM
    Kornfeld, Richard P.
    Prakash, Ravi
    Chen, Allen
    Devereaux, Ann S.
    Greco, Martin E.
    Harmon, Corey C.
    Kipp, Devin M.
    San Martin, A. Miguel
    Sell, Steven W.
    Steltzner, Adam D.
    SPACEFLIGHT MECHANICS 2013, PTS I-IV, 2013, 148 : 3511 - 3539
  • [36] The Mars 2020 Engineering Cameras and Microphone on the Perseverance Rover: A Next-Generation Imaging System for Mars Exploration
    Maki, J. N.
    Gruel, D.
    McKinney, C.
    Ravine, M. A.
    Morales, M.
    Lee, D.
    Willson, R.
    Copley-Woods, D.
    Valvo, M.
    Goodsall, T.
    McGuire, J.
    Sellar, R. G.
    Schaffner, J. A.
    Caplinger, M. A.
    Shamah, J. M.
    Johnson, A. E.
    Ansari, H.
    Singh, K.
    Litwin, T.
    Deen, R.
    Culver, A.
    Ruoff, N.
    Petrizzo, D.
    Kessler, D.
    Basset, C.
    Estlin, T.
    Alibay, F.
    Nelessen, A.
    Algermissen, S.
    SPACE SCIENCE REVIEWS, 2020, 216 (08)
  • [37] Design and verification of thermal control system for Tianwen-1 Mars entry capsule
    Zheng, Kai
    Xiang, Yanchao
    Rao, Wei
    Zhang, Bingqiang
    Xue, Shuyan
    Dai, Chenghao
    Zhang, Dong
    Wang, Yuying
    CHINESE SPACE SCIENCE AND TECHNOLOGY, 2022, 42 (05) : 108 - 116
  • [38] The Mars 2020 Engineering Cameras and Microphone on the Perseverance Rover: A Next-Generation Imaging System for Mars Exploration
    J. N. Maki
    D. Gruel
    C. McKinney
    M. A. Ravine
    M. Morales
    D. Lee
    R. Willson
    D. Copley-Woods
    M. Valvo
    T. Goodsall
    J. McGuire
    R. G. Sellar
    J. A. Schaffner
    M. A. Caplinger
    J. M. Shamah
    A. E. Johnson
    H. Ansari
    K. Singh
    T. Litwin
    R. Deen
    A. Culver
    N. Ruoff
    D. Petrizzo
    D. Kessler
    C. Basset
    T. Estlin
    F. Alibay
    A. Nelessen
    S. Algermissen
    Space Science Reviews, 2020, 216
  • [39] Design and Performance of a Wheel-legged Mobility System of Mars Rover
    Gao H.
    Zheng J.
    Liu Z.
    Wang Y.
    Yu H.
    Deng Z.
    Jixie Gongcheng Xuebao/Journal of Mechanical Engineering, 2019, 55 (01): : 1 - 16
  • [40] Lightweight Thermal Protection System for the Mars Probe
    Zhang C.
    Yang C.
    Ma B.
    Huang W.
    Han X.
    Dong Y.
    Advances in Astronautics Science and Technology, 2022, 5 (3) : 271 - 281