Concave-Convex Problems for the Robin p-Laplacian Plus an Indefinite Potential

被引:5
|
作者
Papageorgiou, Nikolaos S. [1 ]
Scapellato, Andrea [2 ]
机构
[1] Natl Tech Univ Athens, Dept Math, Zografou Campus, Athens 15780, Greece
[2] Univ Catania, Dipartimento Matemat & Informat, Viale Andrea Doria 6, I-95125 Catania, Italy
关键词
concave-convex nonlinearities; p-Laplacian; indefinite potential; antimaximum principle; nonlinear regularity; positive solutions; POSITIVE SOLUTIONS; LOCAL MINIMIZERS; MULTIPLICITY; (P;
D O I
10.3390/math8030421
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider nonlinear Robin problems driven by the p-Laplacian plus an indefinite potential. In the reaction, we have the competing effects of a parametric concave (that is,(p-1)-sublinear) term and of a convex (that is,(p-1)-superlinear) term which need not satisfy the Ambrosetti-Rabinowitz condition. We prove a "bifurcation-type" theorem describing in a precise way the dependence the dependence of the set of positive solutions on the parameter lambda>0. In addition, we show the existence of a smallest positive solutionu lambda* and determine the monotonicity and continuity properties of the map lambda bar right arrow u(lambda)*.
引用
收藏
页数:27
相关论文
共 50 条