Sticky particle model and propagation of chaos

被引:4
|
作者
Dermoune, A [1 ]
机构
[1] USTL, UFR Math, Lab Probabil & Stat, F-59655 Villeneuve Dascq, France
关键词
sticky particle; propagation of chaos;
D O I
10.1016/S0362-546X(99)00405-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The system of conservation law: ∂t(Pt) + ∂x(uPt) = 0, and ∂t(uPt) + ∂x(u2Pt) = αg(t,x)Pt was studied, with initial value P0, u0, and where g(t,x) = Pt((x, + ∞)) - Pt(( - ∞,x)). Some solutions were proved using existing theorems.
引用
收藏
页码:529 / 541
页数:13
相关论文
共 50 条
  • [41] Backward propagation of chaos*
    Lauriere, Mathieu
    Tangpi, Ludovic
    ELECTRONIC JOURNAL OF PROBABILITY, 2022, 27
  • [42] PROPAGATION OF MOLECULAR CHAOS
    PICHON, G
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1972, 274 (23): : 1667 - &
  • [43] On uniform propagation of chaos
    Salhi, Jamil
    MacLaurin, James
    Toumi, Salwa
    STOCHASTICS-AN INTERNATIONAL JOURNAL OF PROBABILITY AND STOCHASTIC PROCESSES, 2018, 90 (01) : 49 - 60
  • [44] LAGRANGIAN COORDINATES FOR THE STICKY PARTICLE SYSTEM
    Hynd, Ryan
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2019, 51 (05) : 3769 - 3795
  • [45] QUANTITATIVE PROPAGATION OF CHAOS IN A BIMOLECULAR CHEMICAL REACTION-DIFFUSION MODEL
    Lim, Tau Shean
    Lu, Yulong
    Nolen, James H.
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2020, 52 (02) : 2098 - 2133
  • [46] Conditional propagation of chaos in a spatial stochastic epidemic model with common noise
    Yen V. Vuong
    Maxime Hauray
    Étienne Pardoux
    Stochastics and Partial Differential Equations: Analysis and Computations, 2022, 10 : 1180 - 1210
  • [47] Conditional propagation of chaos in a spatial stochastic epidemic model with common noise
    Vuong, Yen V.
    Hauray, Maxime
    Pardoux, Etienne
    STOCHASTICS AND PARTIAL DIFFERENTIAL EQUATIONS-ANALYSIS AND COMPUTATIONS, 2022, 10 (03): : 1180 - 1210
  • [48] Crack propagation at the interface between soft adhesives and model surfaces studied with a sticky wedge test
    Bhuyan, Satyam
    Tanguy, Francois
    Martina, David
    Lindner, Anke
    Ciccotti, Matteo
    Creton, Costantino
    SOFT MATTER, 2013, 9 (28) : 6515 - 6524
  • [49] Particle Motion and Chaos
    Zhou, Zhenhua
    Wu, Jian-Pin
    ADVANCES IN HIGH ENERGY PHYSICS, 2020, 2020
  • [50] Random many-particle systems: applications from biology, and propagation of chaos in abstract models
    Wennberg, Bernt
    RIVISTA DI MATEMATICA DELLA UNIVERSITA DI PARMA, 2012, 3 (02): : 291 - 344