Exponential Error Suppression for Near-Term Quantum Devices

被引:97
|
作者
Koczor, Balint [1 ]
机构
[1] Univ Oxford, Dept Mat, Parks Rd, Oxford OK1 3PH, England
基金
英国工程与自然科学研究理事会;
关键词
Quantum Physics; Quantum Information; KRONECKER COEFFICIENTS; ENTANGLEMENT; SIMULATION;
D O I
10.1103/PhysRevX.11.031057
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Suppressing noise in physical systems is of fundamental importance. As quantum computers mature, quantum error correcting codes (QECs) will be adopted in order to suppress errors to any desired level. However in the noisy, intermediate-scale quantum (NISQ) era, the complexity and scale required to adopt even the smallest QEC is prohibitive: a single logical qubit needs to be encoded into many thousands of physical qubits. Here we show that, for the crucial case of estimating expectation values of observables (key to almost all NISQ algorithms) one can indeed achieve an effective exponential suppression. We take n independently prepared circuit outputs to create a state whose symmetries prevent errors from contributing bias to the expected value. The approach is very well suited for current and near-term quantum devices as it is modular in the main computation and requires only a shallow circuit that bridges the n copies immediately prior to measurement. Using no more than four circuit copies, we confirm error suppression below 10(-6) for circuits consisting of several hundred noisy gates (2-qubit gate error 0.5%) in numerical simulations validating our approach.
引用
收藏
页数:30
相关论文
共 50 条
  • [1] Benchmarking near-term devices with quantum error correction
    Wootton, James R.
    [J]. QUANTUM SCIENCE AND TECHNOLOGY, 2020, 5 (04):
  • [2] Density matrix simulation of quantum error correction codes for near-term quantum devices
    Baek, Chungheon
    Ostuka, Tomohiro
    Tarucha, Seigo
    Choi, Byung-Soo
    [J]. QUANTUM SCIENCE AND TECHNOLOGY, 2020, 5 (01):
  • [3] Characterizing quantum supremacy in near-term devices
    Boixo, Sergio
    Isakov, Sergei, V
    Smelyanskiy, Vadim N.
    Babbush, Ryan
    Ding, Nan
    Jiang, Zhang
    Bremner, Michael J.
    Martinis, John M.
    Neven, Hartmut
    [J]. NATURE PHYSICS, 2018, 14 (06) : 595 - 600
  • [4] Characterizing quantum supremacy in near-term devices
    Sergio Boixo
    Sergei V. Isakov
    Vadim N. Smelyanskiy
    Ryan Babbush
    Nan Ding
    Zhang Jiang
    Michael J. Bremner
    John M. Martinis
    Hartmut Neven
    [J]. Nature Physics, 2018, 14 : 595 - 600
  • [5] Quantum Sampling Algorithms for Near-Term Devices
    Wild, Dominik S.
    Sels, Dries
    Pichler, Hannes
    Zanoci, Cristian
    Lukin, Mikhail D.
    [J]. PHYSICAL REVIEW LETTERS, 2021, 127 (10)
  • [6] Error mitigation on a near-term quantum photonic device
    Su, Daiqin
    Israel, Robert
    Sharma, Kunal
    Qi, Haoyu
    Dhand, Ish
    Bradler, Kamil
    [J]. QUANTUM, 2021, 5
  • [7] Efficient quantum readout-error mitigation for sparse measurement outcomes of near-term quantum devices
    Yang, Bo
    Raymond, Rudy
    Uno, Shumpei
    [J]. PHYSICAL REVIEW A, 2022, 106 (01)
  • [8] Neural Error Mitigation of Near-Term Quantum Simulations
    Elizabeth R. Bennewitz
    Florian Hopfmueller
    Bohdan Kulchytskyy
    Juan Carrasquilla
    Pooya Ronagh
    [J]. Nature Machine Intelligence, 2022, 4 : 618 - 624
  • [9] Neural Error Mitigation of Near-Term Quantum Simulations
    Bennewitz, Elizabeth R.
    Hopfmueller, Florian
    Kulchytskyy, Bohdan
    Carrasquilla, Juan
    Ronagh, Pooya
    [J]. NATURE MACHINE INTELLIGENCE, 2022, 4 (07) : 618 - +
  • [10] Detecting and quantifying entanglement on near-term quantum devices
    Kun Wang
    Zhixin Song
    Xuanqiang Zhao
    Zihe Wang
    Xin Wang
    [J]. npj Quantum Information, 8