Quantum Sampling Algorithms for Near-Term Devices

被引:8
|
作者
Wild, Dominik S. [1 ]
Sels, Dries [2 ,3 ]
Pichler, Hannes [4 ,5 ]
Zanoci, Cristian [6 ]
Lukin, Mikhail D. [7 ]
机构
[1] Max Planck Inst Quantum Opt, Hans Kopfermann Str 1, D-85748 Garching, Germany
[2] Flatiron Inst, Ctr Computat Quantum Phys, New York, NY 10010 USA
[3] NYU, Dept Phys, New York, NY 10003 USA
[4] Univ Innsbruck, Inst Theoret Phys, A-6020 Innsbruck, Austria
[5] Austrian Acad Sci, Inst Quantum Optic & Quantum Informat, A-6020 Innsbruck, Austria
[6] MIT, Dept Phys, Cambridge, MA 02139 USA
[7] Harvard Univ, Dept Phys, Cambridge, MA 02138 USA
基金
美国国家科学基金会;
关键词
DYNAMICS; LATTICE; TIME;
D O I
10.1103/PhysRevLett.127.100504
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Efficient sampling from a classical Gibbs distribution is an important computational problem with applications ranging from statistical physics over Monte Carlo and optimization algorithms to machine learning. We introduce a family of quantum algorithms that provide unbiased samples by preparing a state encoding the entire Gibbs distribution. We show that this approach leads to a speedup over a classical Markov chain algorithm for several examples, including the Ising model and sampling from weighted independent sets of two different graphs. Our approach connects computational complexity with phase transitions, providing a physical interpretation of quantum speedup. Moreover, it opens the door to exploring potentially useful sampling algorithms on near-term quantum devices, as the algorithm for sampling from independent sets on certain graphs can be naturally implemented using Rydberg atom arrays.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Quantum optimization using variational algorithms on near-term quantum devices
    Moll, Nikolaj
    Barkoutsos, Panagiotis
    Bishop, Lev S.
    Chow, Jerry M.
    Cross, Andrew
    Egger, Daniel J.
    Filipp, Stefan
    Fuhrer, Andreas
    Gambetta, Jay M.
    Ganzhorn, Marc
    Kandala, Abhinav
    Mezzacapo, Antonio
    Mueller, Peter
    Riess, Walter
    Salis, Gian
    Smolin, John
    Tavernelli, Ivano
    Temme, Kristan
    [J]. QUANTUM SCIENCE AND TECHNOLOGY, 2018, 3 (03):
  • [2] Characterizing quantum supremacy in near-term devices
    Boixo, Sergio
    Isakov, Sergei, V
    Smelyanskiy, Vadim N.
    Babbush, Ryan
    Ding, Nan
    Jiang, Zhang
    Bremner, Michael J.
    Martinis, John M.
    Neven, Hartmut
    [J]. NATURE PHYSICS, 2018, 14 (06) : 595 - 600
  • [3] Characterizing quantum supremacy in near-term devices
    Sergio Boixo
    Sergei V. Isakov
    Vadim N. Smelyanskiy
    Ryan Babbush
    Nan Ding
    Zhang Jiang
    Michael J. Bremner
    John M. Martinis
    Hartmut Neven
    [J]. Nature Physics, 2018, 14 : 595 - 600
  • [4] Optimized Quantum Compilation for Near-Term Algorithms with OpenPulse
    Gokhale, Pranav
    Javadi-Abhari, Ali
    Earnest, Nathan
    Shi, Yunong
    Chong, Frederic T.
    [J]. 2020 53RD ANNUAL IEEE/ACM INTERNATIONAL SYMPOSIUM ON MICROARCHITECTURE (MICRO 2020), 2020, : 186 - 200
  • [5] Hamiltonian simulation algorithms for near-term quantum hardware
    Laura Clinton
    Johannes Bausch
    Toby Cubitt
    [J]. Nature Communications, 12
  • [6] Hamiltonian simulation algorithms for near-term quantum hardware
    Clinton, Laura
    Bausch, Johannes
    Cubitt, Toby
    [J]. NATURE COMMUNICATIONS, 2021, 12 (01)
  • [7] Near-Term Efficient Quantum Algorithms for Entanglement Analysis
    Chen, Ranyiliu
    Zhao, Benchi
    Wang, Xin
    [J]. PHYSICAL REVIEW APPLIED, 2023, 20 (02)
  • [8] Detecting and quantifying entanglement on near-term quantum devices
    Kun Wang
    Zhixin Song
    Xuanqiang Zhao
    Zihe Wang
    Xin Wang
    [J]. npj Quantum Information, 8
  • [9] ArsoNISQ: Analyzing Quantum Algorithms on Near-Term Architectures
    Brandhofer, Sebastian
    Devitt, Simon
    Polian, Ilia
    [J]. 2021 IEEE EUROPEAN TEST SYMPOSIUM (ETS 2021), 2021,
  • [10] Benchmarking near-term devices with quantum error correction
    Wootton, James R.
    [J]. QUANTUM SCIENCE AND TECHNOLOGY, 2020, 5 (04):