Connectivity in Semi-algebraic sets

被引:5
|
作者
Hong, Hoon [1 ]
机构
[1] N Carolina State Univ, Dept Math, Raleigh, NC 27695 USA
关键词
connectivity; road map; semi-algebraic sets; gradient fields; Morse-Smale complex; ROADMAPS;
D O I
10.1109/SYNASC.2010.91
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We consider the problem of deciding whether two given points in a semialgebraic set can be connected, that is, whether the two points lie in a same connected component. In particular, we consider a semialgebraic set consisting of points where a given polynomial is non-zero. We will describe a method based on gradient fields, eigenvectors and interval analysis.
引用
收藏
页码:4 / 7
页数:4
相关论文
共 50 条
  • [21] Analytic reparametrization of semi-algebraic sets
    Yomdin, Y.
    [J]. JOURNAL OF COMPLEXITY, 2008, 24 (01) : 54 - 76
  • [22] Classification of semi-algebraic p-adic sets up to semi-algebraic bijection
    Cluckers, R
    [J]. JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2001, 540 : 105 - 114
  • [23] Logarithmic limit sets of real semi-algebraic sets
    Alessandrini, Daniele
    [J]. ADVANCES IN GEOMETRY, 2013, 13 (01) : 155 - 190
  • [24] Real homotopy theory of semi-algebraic sets
    Hardt, Robert
    Lambrechts, Pascal
    Turchin, Victor
    Volic, Ismar
    [J]. ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2011, 11 (05): : 2477 - 2545
  • [25] COMPUTING ROADMAPS OF GENERAL SEMI-ALGEBRAIC SETS
    CANNY, J
    [J]. COMPUTER JOURNAL, 1993, 36 (05): : 504 - 514
  • [26] A Subdivision Approach to Planar Semi-algebraic Sets
    Mantzaflaris, Angelos
    Mourrain, Bernard
    [J]. ADVANCES IN GEOMETRIC MODELING AND PROCESSING, PROCEEDINGS, 2010, 6130 : 104 - 123
  • [27] The problem of moments on compact semi-algebraic sets
    Putinar, M
    Vasilescu, FH
    [J]. COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1996, 323 (07): : 787 - 791
  • [28] On the Feasibility of Semi-algebraic Sets in Poisson Regression
    Kahle, Thomas
    [J]. MATHEMATICAL SOFTWARE, ICMS 2016, 2016, 9725 : 142 - 147
  • [29] Computing roadmaps of semi-algebraic sets on a variety
    Basu, S
    Pollack, R
    Roy, MF
    [J]. JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2000, 13 (01) : 55 - 82
  • [30] Whitney Stratification of Algebraic Boundaries of Convex Semi-algebraic Sets
    Dai, Zihao
    Li, Zijia
    Yang, Zhi-Hong
    Zhi, Lihong
    [J]. PROCEEDINGS OF THE 2024 INTERNATIONAL SYMPOSIUM ON SYMBOLIC AND ALGEBRAIC COMPUTATION, ISSAC 2024, 2024, : 299 - 306