High-performance UAVs visual tracking based on siamese network

被引:8
|
作者
Yang, Shuaidong [1 ]
Chen, Haiyun [1 ]
Xu, Fancheng [1 ]
Li, Yang [1 ]
Yuan, Jiemin [1 ]
机构
[1] Southwest Petr Univ, Sch Elect Engn & Informat, Chengdu, Peoples R China
来源
VISUAL COMPUTER | 2022年 / 38卷 / 06期
关键词
Object tracking; Unmanned aerial vehicles; Intersection over union; Siamese network; Attention; ROBUST;
D O I
10.1007/s00371-021-02271-7
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
In the process of unmanned aerial vehicles (UAVs) object tracking, the tracking object is lost due to many problems such as occlusion and fast motion. In this paper, based on the SiamRPN algorithm, a UAV object tracking algorithm that optimizes the semantic information of cyberspace, channel feature information and strengthens the selection of bounding boxes, is proposed. Since the traditional SiamRPN method does not consider remote context information, the calculation and selection of bounding boxes need to be improved. Therefore, (1) we design a convolutional attention module to enhance the weighting of feature spatial location and feature channels. (2) We also add a multi-spectral channel attention module to the search branch of the network to further solve remote dependency problems of the network and effectively understand different UAVs tracking scenes. Finally, we use the distance intersection over union to predict the bounding box, and the accurate prediction bounding box is regressed. The experimental results show that the algorithm has strong robustness and accuracy in many scenes.
引用
收藏
页码:2107 / 2123
页数:17
相关论文
共 50 条
  • [31] Combining Siamese Network and Regression Network for Visual Tracking
    Ge, Yao
    Chen, Rui
    Tong, Ying
    Cao, Xuehong
    Liang, Ruiyu
    IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2020, E103D (08) : 1924 - 1927
  • [32] Siamese residual network for efficient visual tracking
    Fan, Nana
    Liu, Qiao
    Li, Xin
    Zhou, Zikun
    He, Zhenyu
    INFORMATION SCIENCES, 2023, 624 : 606 - 623
  • [33] Siamese Feedback Network for Visual Object Tracking
    Gwon M.-G.
    Kim J.
    Um G.-M.
    Lee H.
    Seo J.
    Lim S.Y.
    Yang S.-J.
    Kim W.
    IEIE Transactions on Smart Processing and Computing, 2022, 11 (01): : 24 - 33
  • [34] Siamese Box Adaptive Network for Visual Tracking
    Chen, Zedu
    Zhong, Bineng
    Li, Guorong
    Zhang, Shengping
    Ji, Rongrong
    2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2020, : 6667 - 6676
  • [35] FLOW GUIDED SIAMESE NETWORK FOR VISUAL TRACKING
    Wang, Guokun
    Liu, Bin
    Li, Weihai
    Yu, Nenghai
    2018 25TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2018, : 231 - 235
  • [36] Siamese Guided Anchoring Network for Visual Tracking
    Zhou, Yifei
    Li, Jing
    Chang, Jun
    Xiao, Yafu
    Wan, Jun
    Sun, Hang
    2021 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2021,
  • [37] Dual Attentional Siamese Network for Visual Tracking
    Zhang Xiaowei
    Ma Jianwei
    Liu Hong
    Hu Hai-Miao
    Yang Peng
    DISPLAYS, 2022, 74
  • [38] Densely connected Siamese network visual tracking
    Zhou, Xiaolong
    Wang, Pinghao
    Chan, Sixian
    Fang, Kai
    Fang, Jianwen
    INDUSTRIAL ROBOT-THE INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH AND APPLICATION, 2021, 48 (05): : 680 - 687
  • [39] SiamAtt: Siamese attention network for visual tracking
    Yang, Kai
    He, Zhenyu
    Zhou, Zikun
    Fan, Nana
    KNOWLEDGE-BASED SYSTEMS, 2020, 203
  • [40] SIAMESE FEATURE PYRAMID NETWORK FOR VISUAL TRACKING
    Chang, Shuo
    Zhang, Fan
    Huang, Sai
    Yao, Yuanyuan
    Zhao, Xiaotong
    Feng, Zhiyong
    2019 IEEE/CIC INTERNATIONAL CONFERENCE ON COMMUNICATIONS WORKSHOPS IN CHINA (ICCC WORKSHOPS), 2019, : 164 - 168