Wafer-scale process for fabricating arrays of nanopore devices

被引:19
|
作者
Ahmadi, Amir G. [1 ]
Peng, Zhengchun [2 ]
Hesketh, Peter J. [2 ]
Nair, Sankar [1 ]
机构
[1] Georgia Inst Technol, Sch Chem & Biomol Engn, Atlanta, GA 30332 USA
[2] Georgia Inst Technol, Woodruff Sch Mech Engn, Atlanta, GA 30332 USA
来源
基金
美国国家科学基金会;
关键词
nanopores; nanopore array; electron-beam lithography; solid state nanopore fabrication; nanotechnology; atomic layer deposition; ATOMIC LAYER DEPOSITION; DNA; NANOMETER; NANOTUBES;
D O I
10.1117/1.3486202
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Nanopore-based single-molecule analysis is a subject of strong scientific and technological interest. Recently, solid state nanopores have been demonstrated to possess advantages over biological (e. g., protein) pores due to the relative ease of tuning the pore dimensions, pore geometry, and surface chemistry. Previously demonstrated methods have been confined to the production of single nanopore devices for fundamental studies. Most of these techniques (e. g., electron microscope beams and focused ion beams) are limited in scalability, automation, and reproducibility. We demostrate a wafer-scale method for reproducibly fabricating large arrays of solid state nanopores. The method couples high-resolution electron-beam lithography and atomic layer deposition (ALD). Arrays of nanopores (825 per wafer) are successfully fabricated across 4-in. wafers with tunable pore sizes. The nanopores are fabricated in 16-to 50-nm thin silicon nitride. ALD of aluminum oxide is used to tune the nanopore size. By careful optimization of the processing steps, a device survival rate of up to 96% is achieved on a wafer with 50-nm thin silicon nitride films. Our results facilitate an important step in the development of large-scale nanopore arrays for practical applications such as biosensing. (c) 2010 Society of Photo-Optical Instrumentation Engineers. [DOI: 10.1117/1.3486202]
引用
收藏
页数:8
相关论文
共 50 条
  • [1] WAFER-SCALE TRANSDUCER ARRAYS
    CHAPMAN, GH
    PARAMESWARAN, M
    SYRZYCKI, M
    COMPUTER, 1992, 25 (04) : 50 - 56
  • [2] Strategy for Fabricating Wafer-Scale Platinum Disulfide
    Xu, Hongjun
    Huang, Hsin-Pan
    Fei, HaiFeng
    Feng, Jiafeng
    Fuh, Huei-Ru
    Cho, Jiung
    Choi, Miri
    Chen, Yanhui
    Zhang, Lei
    Chen, Dengyun
    Zhang, Duan
    Coileain, Cormac
    Han, Xiufeng
    Chang, Ching -Ray
    Wu, Han-Chun
    ACS APPLIED MATERIALS & INTERFACES, 2019, 11 (08) : 8202 - 8209
  • [3] WAFER-SCALE INTEGRATION OF SYSTOLIC ARRAYS
    LEIGHTON, T
    LEISERSON, CE
    IEEE TRANSACTIONS ON COMPUTERS, 1985, 34 (05) : 448 - 461
  • [4] A WAFER-SCALE THINNING PROCESS FOR HIGH-PERFORMANCE SILICON DEVICES
    HUANG, CM
    KOSICKI, BB
    BURKE, BE
    ANDERSON, AC
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1988, 135 (08) : C377 - C377
  • [5] PIPELINED DIAGNOSIS OF WAFER-SCALE LINEAR ARRAYS
    RANGARAJAN, S
    FUSSELL, D
    MALEK, M
    JOURNAL OF PARALLEL AND DISTRIBUTED COMPUTING, 1994, 20 (02) : 212 - 223
  • [6] TESTING OF INTERCONNECTION CIRCUITS IN WAFER-SCALE ARRAYS
    CHOI, YH
    IEE PROCEEDINGS-G CIRCUITS DEVICES AND SYSTEMS, 1990, 137 (06): : 482 - 488
  • [7] WAFER-SCALE INTEGRATION OF SYSTOLIC ARRAYS.
    Leighton, Tom
    Leiserson, Charles E.
    IEEE Transactions on Computers, 1985, C-34 (05) : 448 - 461
  • [8] HED-TIE: A wafer-scale approach for fabricating hybrid electronic devices with trench isolated electrodes
    Banerjee, Sreetama
    Buelz, Daniel
    Solonenko, Dmytro
    Reuter, Danny
    Deibel, Carsten
    Hiller, Karla
    Zahn, Dietrich R. T.
    Salvan, Georgeta
    NANOTECHNOLOGY, 2017, 28 (19)
  • [9] Wafer-scale fabrication of penetrating neural microelectrode arrays
    Bhandari, Rajmohan
    Negi, Sandeep
    Solzbacher, Florian
    BIOMEDICAL MICRODEVICES, 2010, 12 (05) : 797 - 807
  • [10] Wafer-scale arrays of epitaxial ferroelectric nanodiscs and nanorings
    Han, Hee
    Ji, Ran
    Park, Yong Jun
    Lee, Sung Kyun
    Le Rhun, Gwenael
    Alexe, Marin
    Nielsch, Kornelius
    Hesse, Dietrich
    Goesele, Ulrich
    Baik, Sunggi
    NANOTECHNOLOGY, 2009, 20 (01)