pysster: classification of biological sequences by learning sequence and structure motifs with convolutional neural networks

被引:64
|
作者
Budach, Stefan [1 ]
Marsico, Annalisa [1 ,2 ]
机构
[1] Max Planck Inst Mol Genet, Otto Warburg Lab, RNA Bioinformat, D-14195 Berlin, Germany
[2] Free Univ Berlin, Dept Math & Comp Sci, D-14195 Berlin, Germany
关键词
DNA;
D O I
10.1093/bioinformatics/bty222
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
The Summary: Convolutional neural networks (CNNs) have been shown to perform exceptionally well in a variety of tasks, including biological sequence classification. Available implementations, however, are usually optimized for a particular task and difficult to reuse. To enable researchers to utilize these networks more easily, we implemented pysster, a Python package for training CNNs on biological sequence data. Sequences are classified by learning sequence and structure motifs and the package offers an automated hyper-parameter optimization procedure and options to visualize learned motifs along with information about their positional and class enrichment. The package runs seamlessly on CPU and GPU and provides a simple interface to train and evaluate a network with a handful lines of code. Using an RNA A-to-I editing dataset and cross-linking immunoprecipitation (CLIP)-seq binding site sequences, we demonstrate that pysster classifies sequences with higher accuracy than previous methods, such as GraphProt or ssHMM, and is able to recover known sequence and structure motifs.
引用
收藏
页码:3035 / 3037
页数:3
相关论文
共 50 条
  • [21] Classification of Subcortical Vascular Cognitive Impairment Using Single MRI Sequence and Deep Learning Convolutional Neural Networks
    Wang, Yao
    Tu, Danyang
    Du, Jing
    Han, Xu
    Sun, Yawen
    Xu, Qun
    Zhai, Guangtao
    Zhou, Yan
    FRONTIERS IN NEUROSCIENCE, 2019, 13
  • [22] Automated Classification of Body MRI Sequence Type Using Convolutional Neural Networks
    Helm, Kimberly
    Mathai, Tejas Sudharshan
    Kim, Boah
    Mukherjee, Pritam
    Liu, Jianfei
    Summers, Ronald M.
    COMPUTER-AIDED DIAGNOSIS, MEDICAL IMAGING 2024, 2024, 12927
  • [23] Using Convolutional Neural Networks and Transfer Learning for Bone Age Classification
    Zhou, Jianlong
    Li, Zelin
    Zhi, Weiming
    Liang, Bin
    Moses, Daniel
    Dawes, Laughlin
    2017 INTERNATIONAL CONFERENCE ON DIGITAL IMAGE COMPUTING - TECHNIQUES AND APPLICATIONS (DICTA), 2017, : 17 - 22
  • [24] Lesion classification in mammograms using convolutional neural networks and transfer learning
    Perre, Ana C.
    Alexandre, Luis A.
    Freire, Luis C.
    COMPUTER METHODS IN BIOMECHANICS AND BIOMEDICAL ENGINEERING-IMAGING AND VISUALIZATION, 2019, 7 (5-6): : 550 - 556
  • [25] Classification and transfer learning of sleep spindles based on convolutional neural networks
    Liang, Jun
    Belkacem, Abdelkader Nasreddine
    Song, Yanxin
    Wang, Jiaxin
    Ai, Zhiguo
    Wang, Xuanqi
    Guo, Jun
    Fan, Lingfeng
    Wang, Changming
    Ji, Bowen
    Wang, Zengguang
    FRONTIERS IN NEUROSCIENCE, 2024, 18
  • [26] Automatic Modulation Classification: Convolutional Deep Learning Neural Networks Approaches
    Hussein, Hany S.
    Essai Ali, Mohamed Hassan
    Ismeil, Mohammed
    Shaaban, Mohamed N.
    Mohamed, Mona Lotfy
    Atallah, Hany A.
    IEEE ACCESS, 2023, 11 : 98695 - 98705
  • [27] Compact Convolutional Neural Networks for Pterygium Classification using Transfer Learning
    Abdani, Siti Raihanah
    Zulkifley, Mohd Asyraf
    Hussain, Aini
    PROCEEDINGS OF THE 2019 IEEE INTERNATIONAL CONFERENCE ON SIGNAL AND IMAGE PROCESSING APPLICATIONS (IEEE ICSIPA 2019), 2019, : 140 - 143
  • [28] Transfer Learning with Convolutional Neural Networks for Classification of Abdominal Ultrasound Images
    Cheng, Phillip M.
    Malhi, Harshawn S.
    JOURNAL OF DIGITAL IMAGING, 2017, 30 (02) : 234 - 243
  • [29] Deep Learning for Visual Indonesian Place Classification with Convolutional Neural Networks
    Chowanda, Andry
    Sutoyo, Rhio
    4TH INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE AND COMPUTATIONAL INTELLIGENCE (ICCSCI 2019) : ENABLING COLLABORATION TO ESCALATE IMPACT OF RESEARCH RESULTS FOR SOCIETY, 2019, 157 : 436 - 443
  • [30] Transfer Learning with Convolutional Neural Networks for Cider Apple Varieties Classification
    Garcia Cortes, Silverio
    Menendez Diaz, Agustin
    Oliveira Prendes, Jose Alberto
    Bello Garcia, Antonio
    AGRONOMY-BASEL, 2022, 12 (11):