A Binomial GLR Control Chart for Monitoring a Proportion

被引:26
|
作者
Huang, Wandi [1 ]
Reynolds, Marion R., Jr. [2 ,3 ]
Wang, Sai [4 ]
机构
[1] Citicorp Credit Serv, Long Isl City, NY 11101 USA
[2] Virginia Tech, Dept Stat, Blacksburg, VA 24061 USA
[3] Virginia Tech, Dept Forest Resources & Environm Conservat, Blacksburg, VA 24061 USA
[4] Capital One Financial Corp, Mclean, VA 22102 USA
关键词
Binomial CUSUM Chart; Moving Window; Shewhart np-Chart; Statistical Process Control; Steady State Average Number of Observations to Signal; Subgroup; Surveillance; STATISTICAL PROCESS-CONTROL; QUALITY-CONTROL; CHANGE-POINT; CUSUM; SYSTEMS; DESIGN; SHIFTS;
D O I
10.1080/00224065.2012.11917895
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This paper considers a control chart for monitoring a process proportion based on a generalized likelihood ratio (GLR) statistic. The objective is to effectively detect a wide range of shift sizes. The GLR statistic is obtained from a moving window of past sample statistics that follow a binomial distribution. The Phase II performance of this chart is evaluated using the steady state average number of observations to signal (SSANOS) for detecting sustained increases in the proportion. Comparisons of the binomial GLR chart to the Shewhart np-chart, the individual binomial cumulative sum (CUSUM) chart, and combinations of multiple binomial CUSUM charts show that the overall performance of the binomial GLR chart is at least as good as these other options. Moreover, unlike the other charts, the binomial GLR chart has an advantage that it does not require users to specify multiple charting parameters that may be difficult to obtain, and this makes it easier for the GLR chart to be designed for practical applications.
引用
收藏
页码:192 / 208
页数:17
相关论文
共 50 条
  • [1] A GLR control chart for monitoring a multinomial process
    Lee, Jaeheon
    Peng, Yiming
    Wang, Ning
    Reynolds, Marion R., Jr.
    [J]. QUALITY AND RELIABILITY ENGINEERING INTERNATIONAL, 2017, 33 (08) : 1773 - 1782
  • [2] The Monitoring of Linear Profiles with a GLR Control Chart
    Xu, Liaosa
    Wang, Sai
    Peng, Yiming
    Morgan, J. P.
    Reynolds, Marion R., Jr.
    Woodall, William H.
    [J]. JOURNAL OF QUALITY TECHNOLOGY, 2012, 44 (04) : 348 - 362
  • [3] An Evaluation of a GLR Control Chart for Monitoring the Process Mean
    Reynolds, Marion R., Jr.
    Lou, Jianying
    [J]. JOURNAL OF QUALITY TECHNOLOGY, 2010, 42 (03) : 287 - 310
  • [4] A GLR Control Chart for Monitoring the Process Mean with Sequential Sampling
    Peng, Yiming
    Reynolds, Marion R., Jr.
    [J]. SEQUENTIAL ANALYSIS-DESIGN METHODS AND APPLICATIONS, 2014, 33 (03): : 298 - 317
  • [5] Control Chart for Monitoring Dependent Binomial Processes
    Kuo, Tsen-, I
    Lin, Cheng-Shih
    Chen, Tung-Tsan
    Hung, Hsin-Hua
    [J]. 2011 IEEE INTERNATIONAL CONFERENCE ON INDUSTRIAL ENGINEERING AND ENGINEERING MANAGEMENT (IEEM), 2011, : 1335 - 1337
  • [6] A GLR Control Chart for Monitoring the Mean Vector of a Multivariate Normal Process
    Wang, Sai
    Reynolds, Marion R., Jr.
    [J]. JOURNAL OF QUALITY TECHNOLOGY, 2013, 45 (01) : 18 - 33
  • [7] Bootstrap beta control chart for monitoring proportion data
    Chowdhury, Shovan
    Kundu, Amarjit
    Modok, Bidhan
    [J]. INTERNATIONAL JOURNAL OF QUALITY & RELIABILITY MANAGEMENT, 2022, 39 (10) : 2354 - 2377
  • [8] The SPRT chart for monitoring a proportion
    Reynolds, MR
    Stoumbos, ZG
    [J]. IIE TRANSACTIONS, 1998, 30 (06) : 545 - 561
  • [9] The Design of GLR Control Chart for Monitoring the Geometric Observations Using Sequential Sampling Scheme
    Shahzad, Faisal
    Huang, Zhensheng
    Shafqat, Ambreen
    [J]. SYMMETRY-BASEL, 2020, 12 (12): : 1 - 14
  • [10] Monitoring of zero-inflated binomial processes with a DEWMA control chart
    Alevizakos, Vasileios
    Koukouvinos, Christos
    [J]. JOURNAL OF APPLIED STATISTICS, 2021, 48 (07) : 1319 - 1338