Ranking of positron emission tomography (PET) in epilepsy diagnostics

被引:0
|
作者
Koepp, MJ
Hammers, A
机构
[1] UCL Natl Hosp Neurol & Neurosurg, London WC1N 3BG, England
[2] Neurol Inst, Dept Clin & Expt Epilepsy, London, England
[3] Hammersmith Hosp, MRC, Ctr Clin Sci, London, England
关键词
PET; rCBF; glucose metabolism; neurotransmitter; epilepsies;
D O I
暂无
中图分类号
R74 [神经病学与精神病学];
学科分类号
摘要
Studies using positron emission tomography (PET) have advanced our pathophysiological and biochemical understanding of focal and generalised epilepsies. H(2)(15)O PET allows quantification of cerebral blood flow (rCBF), and (18)F-fluorodeoxyglucose (FDG)-PET quantification of cerebral glucose metabolism. Ictal H(2)(15)O PET studies are difficult because of its short half-life (2 min), ictal (18)F-FDG-PET are difficult to interpret due to its prolonged uptake. H(2)(15)O and 18F-FDG-PET are only indirect markers of neuronal activity. Neurotransmitters are directly responsible for modulating synaptic activity and PET allows quantification of specific ligand-receptor relationships which are important for epileptogenesis and spread of epileptic activity. Clinically important are: (1) (11)C-flumazenil (FMZ), which images GABA(A)-receptors, and (2) (11)C-diprenorphin (DPN), which has similar affinity to mu-, kappa- and delta-opioid receptors. Co-registration of structural information is essential for the exact interpretation of functional PET data. Correction for partial volume effects is important if there are structural pathological changes, e.g. hippocampal sclerosis. Partial volume effects are non-linear and are of particular importance for small structures, leading to under- or even overestimation (spill-over) of true activity. In this review, we first present PET studies in idiopathic generalised epilepsies, followed by a summary of PET studies investigating glucose metabolism, rCBF and neurotransmitter changes in focal epilepsies.
引用
收藏
页码:176 / 181
页数:6
相关论文
共 50 条
  • [21] A systematic review of positron emission tomography (PET) and positron emission tomography/computed tomography (PET/CT) for the diagnosis of breast cancer recurrence
    Pennant, M.
    Takwoingi, Y.
    Pennant, L.
    Davenport, C.
    Fry-Smith, A.
    Eisinga, A.
    Andronis, L.
    Arvanitis, T.
    Deeks, J.
    Hyde, C.
    HEALTH TECHNOLOGY ASSESSMENT, 2010, 14 (50) : 1 - +
  • [22] CLINICAL ASPECTS OF POSITRON EMISSION TOMOGRAPHY (PET)
    ACKERMAN, RH
    RADIOLOGIC CLINICS OF NORTH AMERICA, 1982, 20 (01) : 9 - 14
  • [23] Positron Emission Tomography (PET) for Flow Measurement
    Ruggles, Arthur E.
    Zhang, Bi Yao
    Peters, Spero M.
    ADVANCED MEASUREMENT AND TEST, PTS 1-3, 2011, 301-303 : 1316 - 1321
  • [24] A brief history of positron emission tomography (PET)
    Wagner, HN
    SEMINARS IN NUCLEAR MEDICINE, 1998, 28 (03) : 213 - 220
  • [25] Relevance of positron emission tomography (PET) in oncology
    Weber, WA
    Avril, N
    Schwaiger, M
    STRAHLENTHERAPIE UND ONKOLOGIE, 1999, 175 (08) : 356 - 373
  • [26] Cardiac Positron Emission Tomography (PET) for Beginners
    Briton Shell
    Drug information journal : DIJ / Drug Information Association, 2001, 35 (1): : 47 - 60
  • [27] State of the art Positron Emission Tomography (PET).
    Nutt, R
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2002, 223 : B152 - B152
  • [28] POSITRON EMISSION TOMOGRAPHY (PET) IN PURE AKINESIA
    TANIWAKI, T
    HOSOKAWA, S
    GOTO, I
    FUJII, N
    OTSUKA, M
    KUWABARA, Y
    ICHIYA, Y
    HASUO, K
    KATO, M
    JOURNAL OF THE NEUROLOGICAL SCIENCES, 1992, 107 (01) : 34 - 39
  • [29] Understanding Positron Emission Tomography (PET) Imaging
    Vodovar, D.
    Aboab, J.
    Silva, S.
    Tournier, N.
    MEDECINE INTENSIVE REANIMATION, 2019, 28 (04): : 347 - 352
  • [30] THE APPLICATIONS IN NEUROSURGERY OF POSITRON EMISSION TOMOGRAPHY (PET)
    LENZI, GL
    FRACKOWIAK, RSJ
    ACTA NEUROCHIRURGICA, 1982, 64 (3-4) : 273 - 274