Validation of Respiratory Signal Derived from Suprasternal Notch Acceleration for Sleep Apnea Detection

被引:0
|
作者
Dehkordi, Parastoo Kh [1 ]
Marzencki, Marcin [1 ]
Tavakolian, Kouhyar [1 ]
Kaminska, Marta [2 ]
Kaminska, Bozena [1 ]
机构
[1] Simon Fraser Univ, CiBER Lab, Sch Engn Sci, Burnaby, BC V5A 1S6, Canada
[2] McGill Univ Hlth Ctr, Respiratory Div, Montreal, PQ, Canada
来源
2011 ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC) | 2011年
关键词
D O I
暂无
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
This study evaluates the respiration signal derived from an accelerometer mounted on the suprasternal notch in three body positions and three respiration types simulating normal sleep conditions. The Acceleration Derived Respiratory signal (ADR) is compared with single strain gauge belt and a standard spirometry signal taken as reference. The results demonstrate the potential of ADR as a simple, low cost and unintrusive method of screening breath disorders such as obstructive sleep apnea/hypopnea.
引用
收藏
页码:3824 / 3827
页数:4
相关论文
共 50 条
  • [41] Validation of Forehead Venous Pressure as a Measure of Respiratory Effort for the Diagnosis of Sleep Apnea
    Djordje Popovic
    Christopher King
    Melanie Guerrero
    Daniel J. Levendowski
    Delmer Henninger
    Philip R. Westbrook
    Journal of Clinical Monitoring and Computing, 2009, 23 : 1 - 10
  • [42] Validation of ECG-derived sleep architecture and ventilation in sleep apnea and chronic fatigue syndrome
    Decker, Michael J.
    Eyal, Shulamit
    Shinar, Zvika
    Fuxman, Yair
    Cahan, Clement
    Reeves, William C.
    Baharav, Anda
    SLEEP AND BREATHING, 2010, 14 (03) : 233 - 239
  • [43] Validation of ECG-derived sleep architecture and ventilation in sleep apnea and chronic fatigue syndrome
    Michael J. Decker
    Shulamit Eyal
    Zvika Shinar
    Yair Fuxman
    Clement Cahan
    William C. Reeves
    Anda Baharav
    Sleep and Breathing, 2010, 14 : 233 - 239
  • [44] OBSTRUCTIVE SLEEP APNEA DETECTION FROM ECG SIGNAL USING NEURO-FUZZY CLASSIFIER
    Gopal, Soumya
    Devi, Aswathy T.
    2017 INTERNATIONAL CONFERENCE ON INTELLIGENT COMPUTING, INSTRUMENTATION AND CONTROL TECHNOLOGIES (ICICICT), 2017, : 910 - 915
  • [45] Sleep apnea detection from ECG signal using deep CNN-based structures
    Ayatollahi, Ahmad
    Afrakhteh, Sajjad
    Soltani, Fatemeh
    Saleh, Ehsan
    EVOLVING SYSTEMS, 2023, 14 (02) : 191 - 206
  • [46] Detection of Obstructive Sleep Apnea from ECG Signal Using SVM Based Grid Search
    Valavan, K. K.
    Manoj, S.
    Abishek, S.
    Vijay, T. G. Gokull
    Vojaswwin, A. P.
    Gini, J. Rolant
    Ramachandran, K., I
    INTERNATIONAL JOURNAL OF ELECTRONICS AND TELECOMMUNICATIONS, 2021, 67 (01) : 5 - 12
  • [47] Sleep apnea detection from ECG signal using deep CNN-based structures
    Ahmad Ayatollahi
    Sajjad Afrakhteh
    Fatemeh Soltani
    Ehsan Saleh
    Evolving Systems, 2023, 14 : 191 - 206
  • [48] Accelerometry-derived respiratory index estimating apnea-hypopnea index for sleep apnea screening
    Bricout, Aurelien
    Fontecave-Jallon, Julie
    Pepin, Jean-Louis
    Gumery, Pierre-Yves
    COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2021, 207
  • [49] EEG AND HRV SIGNAL FEATURES FOR AUTOMATIC SLEEP STAGING AND APNEA DETECTION
    Estrada, Edson
    Nazeran, Homer
    20TH INTERNATIONAL CONFERENCE ON ELECTRONICS COMMUNICATIONS AND COMPUTERS (CONIELECOMP 2010), 2010, : 142 - 147
  • [50] Validation of a photoplethysmography device for detection of obstructive sleep apnea in the perioperative setting
    Philipp Faßbender
    Ali Haddad
    Silja Bürgener
    Jürgen Peters
    Journal of Clinical Monitoring and Computing, 2019, 33 : 341 - 345