Non-extreme Calabi-Yau black holes

被引:13
|
作者
Kastor, D
Win, KZ
机构
[1] Department of Physics and Astronomy, University of Massachusetts, Amherst
关键词
D O I
10.1016/S0370-2693(97)00988-X
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Non-extreme black hole solutions of four dimensional, N=2 supergravity theories with Calabi-Yau prepotentials are presented, which generalize certain known double-extreme and extreme solutions. The boost parameters characterizing the nonextreme solutions must satisfy certain constraints, which effectively limit the functional independence of the moduli scalars. A necessary condition for being able to take certain boost parameters independent is found to be block diagonality of the gauge coupling matrix. We present a number of examples aimed at developing an understanding of this situation and speculate about the existence of more general solutions. (C) 1997 Elsevier Science B.V.
引用
收藏
页码:33 / 38
页数:6
相关论文
共 50 条
  • [31] Non-commutative Calabi-Yau manifolds
    Berenstein, D
    Leigh, RG
    PHYSICS LETTERS B, 2001, 499 (1-2) : 207 - 214
  • [32] Matrix models, 4D black holes and topological strings on non-compact Calabi-Yau manifolds
    Danielsson, UH
    Olsson, ME
    Vonk, M
    JOURNAL OF HIGH ENERGY PHYSICS, 2004, (11):
  • [33] Non-commutative projective Calabi-Yau schemes
    Kanazawa, Atsushi
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2015, 219 (07) : 2771 - 2780
  • [34] Octonionic Calabi-Yau Theorem
    Alesker, Semyon
    Gordon, Peter V.
    JOURNAL OF GEOMETRIC ANALYSIS, 2024, 34 (09)
  • [35] Primitive Calabi-Yau threefolds
    Gross, M
    JOURNAL OF DIFFERENTIAL GEOMETRY, 1997, 45 (02) : 288 - 318
  • [36] Deformed Calabi-Yau completions
    Keller, Bernhard
    Van den Bergh, Michel
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2011, 654 : 125 - 180
  • [37] ON A GENERALIZED CALABI-YAU EQUATION
    Wang, Hongyu
    Zhu, Peng
    ANNALES DE L INSTITUT FOURIER, 2010, 60 (05) : 1595 - 1615
  • [38] ON COLLAPSING CALABI-YAU FIBRATIONS
    Li, Yang
    JOURNAL OF DIFFERENTIAL GEOMETRY, 2021, 117 (03) : 451 - 483
  • [39] DEGENERATIONS OF CALABI-YAU METRICS
    Tosatti, Valentino
    GEOMETRY AND PHYSICS IN CRACOW, 2011, 4 (03): : 495 - 505
  • [40] Nuclear Calabi-Yau space
    deWet, JA
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 1996, 35 (06) : 1201 - 1210