Improving estimation of the fractionally differencing parameter in the SARFIMA model using tapered periodogram

被引:1
|
作者
Ye, Xunyu [1 ]
Gao, Ping [1 ]
Li, Handong [1 ]
机构
[1] Beijing Normal Univ, Dept Management Sci & Engn, Haidian Dist, Peoples R China
关键词
Long memory models; Seasonality; Tapered periodogram; Monte Carlo study; Intraday volume; High-frequency volatility; LONG-MEMORY MODEL; BANDWIDTH;
D O I
10.1016/j.econmod.2014.11.001
中图分类号
F [经济];
学科分类号
02 ;
摘要
This paper presents a new method to estimate the fractional differencing parameters in the SARFIIVIA model. A technique of split cosine bell tapering is suggested to improve the EGPH method. The simulation study shows that the optimal split proportion and bandwidth for the EGPH with split cosine bell tapering method respectively are p = 0.1 and LI = 0.9. The new method with the optimal parameters outperforms the EGPH and EGPH with cosine bell tapering. We further applied the EGPH method to estimate intraday volume series and high-frequency absolute return data. The results show that the seasonal fractionally differencing parameters are all estimated to be large, while the nonseasonal fractionally differencing parameters are all very small. This indicates that their long memory property may be mainly caused by the structure of long-range dependence at the seasonal lags instead of dependence at the nonseasonal lags. (c) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:167 / 179
页数:13
相关论文
共 50 条
  • [21] Model parameter estimation using coherent structure colouring
    Schlueter-Kuck, Kristy L.
    Dabiri, John O.
    JOURNAL OF FLUID MECHANICS, 2019, 861 : 886 - 900
  • [22] Estimation of frequency response function using parameter model
    Cao, Jian
    Zhendong Ceshi Yu Zhenduan/Journal of Vibration, Measurement and Diagnosis, 2011, 31 (01): : 70 - 73
  • [23] Estimation of parameter uncertainty using inverse model sensitivities
    Vesselinov, VV
    COMPUTATIONAL METHODS IN WATER RESOURCES, VOLS 1 AND 2, 2004, 55 : 1243 - 1250
  • [24] Test models for improving filtering with model errors through stochastic parameter estimation
    Gershgorin, B.
    Harlim, J.
    Majda, A. J.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2010, 229 (01) : 1 - 31
  • [25] Improving parameter and state estimation of a hydrological model with the ensemble square root filter
    Li, Ning
    Kinzelbach, Wolfgang
    Li, Haitao
    Li, Wenpeng
    Chen, Fei
    ADVANCES IN WATER RESOURCES, 2021, 147
  • [26] Improving estimation capacity of a hybrid model of LSTM and SWAT by reducing parameter uncertainty
    Jeong, Hyemin
    Lee, Byeongwon
    Kim, Dongho
    Qi, Junyu
    Lim, Kyoung Jae
    Lee, Sangchul
    JOURNAL OF HYDROLOGY, 2024, 633
  • [27] Design of follow-up experiments for improving model discrimination and parameter estimation
    Ng, SH
    Chick, SE
    NAVAL RESEARCH LOGISTICS, 2004, 51 (08) : 1129 - 1148
  • [28] Improving parameter estimation for column experiments by multi-model evaluation and comparison
    Tang, Guoping
    Mayes, Melanie A.
    Parker, Jack C.
    Yin, Xiangping L.
    Watson, David B.
    Jardine, Philip M.
    JOURNAL OF HYDROLOGY, 2009, 376 (3-4) : 567 - 578
  • [29] Improving Parameter Estimation of Fuel Cell Using Honey Badger Optimization Algorithm
    Almodfer, Rolla
    Abd Elaziz, Mohamed
    Alshathri, Samah
    Abualigah, Laith
    Mudhsh, Mohammed
    Shahzad, Khurram
    Issa, Mohamed
    FRONTIERS IN ENERGY RESEARCH, 2022, 10
  • [30] Improving gravitational-wave parameter estimation using Gaussian process regression
    Moore, Christopher J.
    Berry, Christopher P. L.
    Chua, Alvin J. K.
    Gair, Jonathan R.
    PHYSICAL REVIEW D, 2016, 93 (06)