Comparing Click-through Data to Purchase Decisions for Retrieval Evaluation

被引:0
|
作者
Hofmann, Katja [1 ]
Huurnink, Bouke [1 ]
Bron, Marc [1 ]
de Rijke, Maarten [1 ]
机构
[1] Univ Amsterdam, ISLA, NL-1012 WX Amsterdam, Netherlands
关键词
Query log analysis; Evaluation;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Traditional retrieval evaluation uses explicit relevance judgments which are expensive to collect. Relevance assessments inferred from implicit feedback such as click-through data can be collected inexpensively, but may be less reliable. We compare assessments derived from click-through data to another source of implicit feedback that we assume to be highly indicative of relevance: purchase decisions. Evaluating retrieval runs based on a log of an audiovisual archive, we find agreement between system rankings and purchase decisions to be surprisingly high.
引用
收藏
页码:761 / 762
页数:2
相关论文
共 50 条
  • [31] An improved method for combination feature selection in web click-through data mining
    Zhao, Hongwei
    Huang, Yongfeng
    2012 INTERNATIONAL SYMPOSIUM ON INFORMATION SCIENCE AND ENGINEERING (ISISE), 2012, : 381 - 385
  • [32] Deep Learning for Click-Through Rate Estimation
    Zhang, Weinan
    Qin, Jiarui
    Guo, Wei
    Tang, Ruiming
    He, Xiuqiang
    PROCEEDINGS OF THE THIRTIETH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, IJCAI 2021, 2021, : 4695 - 4703
  • [33] Feature embedding in click-through rate prediction
    Pahor, Samo
    Kopič, Davorin
    Demšar, Jure
    Elektrotehniski Vestnik/Electrotechnical Review, 2023, 90 (03): : 75 - 89
  • [34] Ad Click-Through Rate Prediction: A Survey
    Gu, Liqiong
    DATABASE SYSTEMS FOR ADVANCED APPLICATIONS: DASFAA 2021 INTERNATIONAL WORKSHOPS, 2021, 12680 : 140 - 153
  • [35] The effectiveness of banner advertisements: Involvement and click-through
    Cho, CH
    JOURNALISM & MASS COMMUNICATION QUARTERLY, 2003, 80 (03) : 623 - 645
  • [36] Interpretable Click-Through Rate Prediction through Hierarchical Attention
    Li, Zeyu
    Cheng, Wei
    Chen, Yang
    Chen, Haifeng
    Wang, Wei
    PROCEEDINGS OF THE 13TH INTERNATIONAL CONFERENCE ON WEB SEARCH AND DATA MINING (WSDM '20), 2020, : 313 - 321
  • [37] Learning a Product Relevance Model from Click-Through Data in E-Commerce
    Yao, Shaowei
    Tan, Jiwei
    Chen, Xi
    Yang, Keping
    Xiao, Rong
    Deng, Hongbo
    Wan, Xiaojun
    PROCEEDINGS OF THE WORLD WIDE WEB CONFERENCE 2021 (WWW 2021), 2021, : 2890 - 2899
  • [38] Fighting against Web Spam: A Novel Propagation Method based on Click-through Data
    Wei, Chao
    Liu, Yiqun
    Zhang, Min
    Ma, Shaoping
    Ru, Liyun
    Zhang, Kuo
    SIGIR 2012: PROCEEDINGS OF THE 35TH INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL, 2012, : 395 - 404
  • [39] Deep Interest Network for Click-Through Rate Prediction
    Zhou, Guorui
    Zhu, Xiaoqiang
    Song, Chengru
    Fan, Ying
    Zhu, Han
    Ma, Xiao
    Yan, Yanghui
    Jin, Junqi
    Li, Han
    Gai, Kun
    KDD'18: PROCEEDINGS OF THE 24TH ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY & DATA MINING, 2018, : 1059 - 1068
  • [40] Deep Interest Context Network for Click-Through Rate
    Yu, Mingting
    Liu, Tingting
    Yin, Jian
    Chai, Peilin
    APPLIED SCIENCES-BASEL, 2022, 12 (19):