Shock reliability enhancement for MEMS vibration energy harvesters with nonlinear air damping as a soft stopper

被引:13
|
作者
Chen, Shao-Tuan [1 ]
Du, Sijun [1 ]
Arroyo, Emmanuelle [1 ]
Jia, Yu [1 ,2 ]
Seshia, Ashwin [1 ]
机构
[1] Univ Cambridge, Nanosci Ctr, Cambridge CB3 0FF, England
[2] Univ Chester, Dept Mech Engn, Chester CH1 4BJ, Cheshire, England
基金
英国工程与自然科学研究理事会;
关键词
nonlinear damping; shock reliability; soft mechanical stopper; STRENGTH; FRACTURE;
D O I
10.1088/1361-6439/aa82ed
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper presents a novel application of utilising nonlinear air damping as a soft mechanical stopper to increase the shock reliability for microelectromechanical systems (MEMS) vibration energy harvesters. The theoretical framework for nonlinear air damping is constructed for MEMS vibration energy harvesters operating in different air pressure levels, and characterisation experiments are conducted to establish the relationship between air pressure and nonlinear air damping coefficient for rectangular cantilever MEMS micro cantilevers with different proof masses. Design guidelines on choosing the optimal air pressure level for different MEMS vibration energy harvesters based on the trade-off between harvestable energy and the device robustness are presented, and random excitation experiments are performed to verify the robustness of MEMS vibration energy harvesters with nonlinear air damping as soft stoppers to limit the maximum deflection distance and increase the shock reliability of the device.
引用
下载
收藏
页数:13
相关论文
共 50 条
  • [31] Enhancement of the performance of nonlinear vibration energy harvesters by exploiting secondary resonances in multi-frequency excitations
    Hadi Jahanshahi
    Diyi Chen
    Yu-Ming Chu
    J. F. Gómez-Aguilar
    Ayman A. Aly
    The European Physical Journal Plus, 136
  • [32] Enhancement of the performance of nonlinear vibration energy harvesters by exploiting secondary resonances in multi-frequency excitations
    Jahanshahi, Hadi
    Chen, Diyi
    Chu, Yu-Ming
    Gomez-Aguilar, J. F.
    Aly, Ayman A.
    EUROPEAN PHYSICAL JOURNAL PLUS, 2021, 136 (03):
  • [33] Design enhancement and non-dimensional analysis of magnetically-levitated nonlinear vibration energy harvesters
    Nammari, Abdullah
    Bardaweel, Hamzeh
    JOURNAL OF INTELLIGENT MATERIAL SYSTEMS AND STRUCTURES, 2017, 28 (19) : 2810 - 2822
  • [34] Nonlinear phenomena in magnetic plucking of piezoelectric vibration energy harvesters
    Rosso, Michele
    Kohtanen, Eetu
    Corigliano, Alberto
    Ardito, Raffaele
    Erturk, Alper
    SENSORS AND ACTUATORS A-PHYSICAL, 2023, 362
  • [35] Theoretical analysis and general characteristics for nonlinear vibration energy harvesters
    Wu, Hanxiao
    Tao, Zhi
    Li, Haiwang
    Xu, Tiantong
    Wang, Wenbin
    Sun, Jiamian
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2022, 55 (14)
  • [36] Optimized and robust orbit jump for nonlinear vibration energy harvesters
    Camille Saint-Martin
    Adrien Morel
    Ludovic Charleux
    Emile Roux
    David Gibus
    Aya Benhemou
    Adrien Badel
    Nonlinear Dynamics, 2024, 112 : 3081 - 3105
  • [37] A method to enhance the nonlinear magnetic plucking for vibration energy harvesters
    Rosso, Michele
    Cuccurullo, Simone
    Perli, Filippo Pietro
    Maspero, Federico
    Corigliano, Alberto
    Ardito, Raffaele
    MECCANICA, 2024, 59 (09) : 1577 - 1592
  • [38] Stationary Response of Nonlinear Vibration Energy Harvesters by Path Integration
    Zhu, Haitao
    Xu, Yangang
    Yu, Yang
    Xu, Lixin
    JOURNAL OF COMPUTATIONAL AND NONLINEAR DYNAMICS, 2021, 16 (05):
  • [39] The bandwidth of optimized nonlinear vibration-based energy harvesters
    Cammarano, A.
    Neild, S. A.
    Burrow, S. G.
    Inman, D. J.
    SMART MATERIALS AND STRUCTURES, 2014, 23 (05)
  • [40] Optimized and robust orbit jump for nonlinear vibration energy harvesters
    Saint-Martin, Camille
    Morel, Adrien
    Charleux, Ludovic
    Roux, Emile
    Gibus, David
    Benhemou, Aya
    Badel, Adrien
    NONLINEAR DYNAMICS, 2024, 112 (05) : 3081 - 3105