Asymptotic Behavior of Solutions to the Drift-Diffusion Equation with Critical Dissipation

被引:3
|
作者
Yamamoto, Masakazu [1 ]
Sugiyama, Yuusuke [2 ]
机构
[1] Niigata Univ, Grad Sch Sci & Technol, Niigata 9502181, Japan
[2] Tokyo Univ Sci, Dept Sci, Tokyo 1628601, Japan
来源
ANNALES HENRI POINCARE | 2016年 / 17卷 / 06期
关键词
LARGE-TIME BEHAVIOR; QUASI-GEOSTROPHIC EQUATIONS; ANOMALOUS DIFFUSION; MAXIMUM PRINCIPLE; SYSTEM; EXISTENCE;
D O I
10.1007/s00023-015-0428-7
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, the initial value problem for the drift-diffusion equation which stands for a model of a semiconductor device is studied. When the dissipative effect on the drift-diffusion equation is given by the half Laplacian, the dissipation balances to the extra force term. This case is called critical. The goal of this paper is to derive decay and asymptotic expansion of the solution to the drift-diffusion equation as time variable tends to infinity.
引用
收藏
页码:1331 / 1352
页数:22
相关论文
共 50 条
  • [31] Asymmetry of nonlocal dissipation: From drift-diffusion to hydrodynamics
    Tikhonov, K. S.
    Gornyi, I., V
    Kachorovskii, V. Yu
    Mirlin, A. D.
    [J]. PHYSICAL REVIEW B, 2019, 100 (20)
  • [32] Decay Estimates and Large Time Behavior of Solutions to the Drift-Diffusion System
    Kobayashi, Ryo
    Kawashima, Shuichi
    [J]. FUNKCIALAJ EKVACIOJ-SERIO INTERNACIA, 2008, 51 (03): : 371 - 394
  • [33] QUALITATIVE BEHAVIOR OF SOLUTIONS OF A DEGENERATE NONLINEAR DRIFT-DIFFUSION MODEL FOR SEMICONDUCTORS
    JUNGEL, A
    [J]. MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 1995, 5 (04): : 497 - 518
  • [34] Asymptotic Behavior of Solutions of a Periodic Diffusion Equation
    Jiebao Sun
    Boying Wu
    Dazhi Zhang
    [J]. Journal of Inequalities and Applications, 2010
  • [35] Asymptotic Behavior of Solutions of a Periodic Diffusion Equation
    Sun, Jiebao
    Wu, Boying
    Zhang, Dazhi
    [J]. JOURNAL OF INEQUALITIES AND APPLICATIONS, 2010,
  • [36] Asymptotic behavior of solutions to the semidiscrete diffusion equation
    Slavik, Antonin
    [J]. APPLIED MATHEMATICS LETTERS, 2020, 106 (106)
  • [37] Holder continuity for a drift-diffusion equation with pressure
    Silvestre, Luis
    Vicol, Vlad
    [J]. ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2012, 29 (04): : 637 - 652
  • [38] STABILITY AND INSTABILITY OF SOLUTIONS TO THE DRIFT-DIFFUSION SYSTEM
    Ogawa, Takayoshi
    Wakui, Hiroshi
    [J]. EVOLUTION EQUATIONS AND CONTROL THEORY, 2017, 6 (04): : 587 - 597
  • [39] Asymptotic behavior of solutions to the multidimensional semidiscrete diffusion equation
    Slavik, Antonin
    [J]. ELECTRONIC JOURNAL OF QUALITATIVE THEORY OF DIFFERENTIAL EQUATIONS, 2022, (09) : 1 - 9
  • [40] NONOSCILLATORY STREAMLINE UPWIND FORMULATIONS FOR DRIFT-DIFFUSION EQUATION
    YIE, H
    TENG, ZM
    [J]. IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, 1993, 12 (10) : 1535 - 1541