Generalized Perfect Codes for Symmetric Classical-Quantum Channels

被引:0
|
作者
Coll, Andreu Blasco [1 ]
Vazquez-Vilar, Gonzalo [2 ,3 ]
Rodriguez Fonollosa, Javier [1 ]
机构
[1] Univ Politecn Cataluna, Dept Teoria Senyal & Comunicac, Barcelona 08034, Spain
[2] Univ Carlos III Madrid, Signal Theory & Commun Dept, Leganes 28911, Spain
[3] Gregorio Maranon Hlth Res Inst, Madrid 28007, Spain
基金
欧洲研究理事会;
关键词
Classical-quantum channel; finite blocklength analysis; quantum meta-converse; perfect code; quasi-perfect code; quantum hypothesis testing; ERROR-PROBABILITY; CAPACITY; INFORMATION; SUPERADDITIVITY; BOUNDS;
D O I
10.1109/TIT.2022.3170868
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We define a new family of codes for symmetric classical-quantum channels and establish their optimality. To this end, we extend the classical notion of generalized perfect and quasi-perfect codes to channels defined over some finite dimensional complex Hilbert output space. The resulting optimality conditions depend on the channel considered and on an auxiliary state defined on the output space of the channel. For certain N-qubit classical-quantum channels, we show that codes based on a generalization of Bell states are quasi-perfect and, therefore, they feature the smallest error probability among all codes of the same blocklength and cardinality.
引用
收藏
页码:5923 / 5936
页数:14
相关论文
共 50 条
  • [31] Moderate Deviation Analysis for Classical-Quantum Channels and Quantum Hypothesis Testing
    Cheng, Hao-Chung
    Hsieh, Min-Hsiu
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2018, 64 (02) : 1385 - 1403
  • [32] Classical codes for quantum broadcast channels
    Savov, Ivan
    Wilde, Mark M.
    [J]. 2012 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY PROCEEDINGS (ISIT), 2012, : 721 - 725
  • [33] Classical Codes for Quantum Broadcast Channels
    Savov, Ivan
    Wilde, Mark M.
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2015, 61 (12) : 7017 - 7028
  • [34] Classical-quantum semigroups
    Aniello, Paolo
    [J]. XXII INTERNATIONAL CONFERENCE ON INTEGRABLE SYSTEMS AND QUANTUM SYMMETRIES (ISQS-22), 2014, 563
  • [35] Constant Compositions in the Sphere Packing Bound for Classical-Quantum Channels
    Dalai, Marco
    Winter, Andreas
    [J]. 2014 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT), 2014, : 151 - 155
  • [36] Constant Compositions in the Sphere Packing Bound for Classical-Quantum Channels
    Dalai, Marco
    Winter, Andreas
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2017, 63 (09) : 5603 - 5617
  • [37] The Classical-Quantum Limit
    Layton, Isaac
    Oppenheim, Jonathan
    [J]. PRX QUANTUM, 2024, 5 (02):
  • [38] Efficient quantum key distribution protocol based on classical-quantum polarized channels
    Yi, Zhengzhong
    Fang, Junbin
    Lin, Puxi
    Wen, Xiaojun
    Jiang, Zoe Lin
    Wang, Xuan
    [J]. QUANTUM INFORMATION PROCESSING, 2019, 18 (12)
  • [39] Generalized algebraic transformations and exactly solvable classical-quantum models
    Strecka, Jozef
    [J]. PHYSICS LETTERS A, 2010, 374 (36) : 3718 - 3722
  • [40] Classical-Quantum Limits
    Oliynyk, Todd A.
    [J]. FOUNDATIONS OF PHYSICS, 2016, 46 (12) : 1551 - 1572