Artificial intelligence-powered spatial analysis of tumor-infiltrating lymphocytes predicts survival after immune checkpoint inhibitor therapy across multiple cancer types.

被引:2
|
作者
Shen, Jeanne
Lee, Taebum
Hwang, Jun-Eul
Choi, Yoon-La
Lee, Se-Hoon
Kim, Hyojin
Chung, Jin-haeng
Bogdan, Stephanie
Huang, Maggie
Raclin, Tyler
Fisher, George A.
Pereira, Sergio
Park, Seonwook
Ma, Minuk
Yoo, Donggeun
Shin, Seunghwan
Paeng, Kyunghyun
Ock, Chan-Young
Mok, Tony S. K.
Bang, Yung-Jue
机构
[1] Stanford Univ, Sch Med, Dept Pathol, Stanford, CA 94305 USA
[2] Chonnam Natl Univ Hosp, Dept Pathol, Gwangju, South Korea
[3] Chonnam Natl Univ, Sch Med, Dept Internal Med, Div Hematol Oncol, Gwangju, South Korea
[4] Sungkyunkwan Univ, Sch Med, Samsung Med Ctr, Dept Pathol & Translat Med, Seoul, South Korea
[5] Sungkyunkwan Univ, Sch Med, Samsung Med Ctr, Div Hematol & Oncol,Dept Med, Seoul, South Korea
[6] Seoul Natl Univ, Bundang Hosp, Dept Pathol, Seongnam, South Korea
[7] Stanford Univ, Sch Med, Ctr Artificial Intelligence Med & Imaging, Stanford, CA 94305 USA
[8] UC Davis Hlth, Davis, CA USA
[9] Stanford Univ, Sch Med, Stanford, CA 94305 USA
[10] Stanford Univ, Dept Med, Stanford, CA 94305 USA
[11] Lunit Inc, Seoul, South Korea
[12] Chinese Univ Hong Kong, State Key Lab Translat Oncol, Hong Kong, Peoples R China
[13] Seoul Natl Univ, Coll Med, Seoul, South Korea
关键词
D O I
10.1200/JCO.2021.39.15_suppl.2607
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
2607
引用
收藏
页数:2
相关论文
共 50 条
  • [41] Artificial intelligence (AI) analysis of tumor-infiltrating lymphocytes (TILs) in hematoxylin and eosin (H&E) slides to explore immune phenotypes in papillary thyroid cancer
    Nam, Myungwoo
    Chung, Liam Il-Young
    Kim, Leeseul
    Park, Gahee
    Kim, Sukjun
    Song, Sanghoon
    Ock, Chan-Young
    Chae, Young Kwang
    [J]. JOURNAL OF CLINICAL ONCOLOGY, 2023, 41 (16)
  • [42] Computerized features of spatial arrangement of tumor-infiltrating lymphocytes from H&E images predicts survival and response to checkpoint inhibitors in gynecologic cancers.
    Esfahani, Sepideh Azarianpour
    Corredor, German
    Bera, Kaustav
    Fu, PingFu
    Joehlin-Price, Amy
    Mahdi, Haider
    Madabhushi, Anant
    [J]. JOURNAL OF CLINICAL ONCOLOGY, 2020, 38 (15)
  • [43] Clinical Validation of Artificial Intelligence-Powered PD-L1 Tumor Proportion Score Interpretation for Immune Checkpoint Inhibitor Response Prediction in Non-Small Cell Lung Cancer
    Kim, Hyojin
    Kim, Seokhwi
    Choi, Sangjoon
    Park, Changhee
    Park, Seonwook
    Pereira, Sergio
    Ma, Minuk
    Yoo, Donggeun
    Paeng, Kyunghyun
    Jung, Wonkyung
    Park, Sehhoon
    Ock, Chan-Young
    Lee, Se-Hoon
    Choi, Yoon-La
    Chung, Jin-Haeng
    [J]. JCO PRECISION ONCOLOGY, 2024, 8
  • [44] Transfer Learning-Assisted Survival Analysis of Breast Cancer Relying on the Spatial Interaction Between Tumor-Infiltrating Lymphocytes and Tumors
    Wu, Yawen
    Zuo, Yingli
    Zhu, Qi
    Sheng, Jianpeng
    Zhang, Daoqiang
    Shao, Wei
    [J]. MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION, MICCAI 2023, PT VI, 2023, 14225 : 612 - 621
  • [45] Analysis at tumor-infiltrating immune cells gastrointestinal stromal tumors (GIST) after tyrosine kinase inhibitor therapy.
    Hohenberger, Peter
    Zhao, Wenyi
    Deligiarmi, Maria
    Simon-Keller, Katia
    Cao, Hui
    Marx, Alexander
    [J]. JOURNAL OF CLINICAL ONCOLOGY, 2017, 35
  • [46] Survival outcomes following immune checkpoint inhibitor therapy of advanced cutaneous melanoma by age and tumor infiltrating lymphocytes in the primary cutaneous site.
    Kane, Mallory
    Holmes, Aaron N.
    Kerr, Phil
    Hegde, Upendra P.
    [J]. JOURNAL OF CLINICAL ONCOLOGY, 2022, 40 (16)
  • [47] Artificial Intelligence (AI) Analysis of Tumor Infiltrating Lymphocytes (TIL) in Colorectal Cancer Reveals Prognostic Significance of Spatial Distribution of TIL
    Jung, Minsun
    Koh, Hyun Hee
    Kim, Milim
    Cho, Soo Ick
    Lee, Taebum
    Kim, Sukjun
    Seo, Melody
    Mostafavi, Mohammad
    Kang, Mingu
    Park, Seonwook
    Yoo, Donggeun
    Lee, Seokhyeon
    Suh, Ja-Hee
    [J]. LABORATORY INVESTIGATION, 2024, 104 (03) : S735 - S736
  • [48] Artificial intelligence (AI)-powered analysis of human epidermal growth factor receptor-2 (HER2) and tumor-infiltrating lymphocytes (TILs) in advanced biliary tract cancer (BTC)
    Kim, G.
    Kim, C.
    Kang, B.
    Shin, S.
    Lee, T.
    Song, S.
    Kim, S.
    Mostafavi, M.
    Song, H.
    Pereira, S.
    Chon, H.
    [J]. ANNALS OF ONCOLOGY, 2023, 34 : S229 - S229
  • [49] Spatial analysis of tumor infiltrating lymphocytes in histological images using deep learning predicts progression-free survival in colorectal cancer
    Xu, Hongming
    Cha, Yoon Jin
    Clemenceau, Jean
    Choi, Jinhwan
    Lee, Sung Hak
    Kang, Jeonghyun
    Hwang, Tae Hyun
    [J]. CANCER RESEARCH, 2022, 82 (12)
  • [50] Clinical performance of artificial intelligence-powered annotation of tumor cell PD-L1 expression for treatment of immune-checkpoint inhibitor (ICI) in advanced non-small cell lung cancer (NSCLC).
    Kim, Hyojin
    Choi, Sangjoon
    Kim, Seokhwi
    Aum, Jaehong
    Pereira, Sergio
    Park, Seonwook
    Ma, Minuk
    Shin, Seunghwan
    Paeng, Kyunghyun
    Yoo, Donggeun
    Jung, Wonkyung
    Ock, Chan-Young
    Lee, Se-Hoon
    Chung, Jin-haeng
    Choi, Yoon-La
    Mok, Tony S. K.
    [J]. JOURNAL OF CLINICAL ONCOLOGY, 2021, 39 (15)