Ferroelectricity in CMOS-Compatible Hafnium Oxides Reviving the ferroelectric field-effect transistor technology

被引:25
|
作者
Das, Dipjyoti [1 ]
Khan, Asif Islam [2 ,3 ]
机构
[1] Korea Adv Inst Sci & Technol KAIST, Elect Engn Dept, Daejeon, South Korea
[2] Georgia Inst Technol, Sch Elect & Comp Engn, Atlanta, GA 30326 USA
[3] Georgia Inst Technol, Sch Mat Sci & Engn, Atlanta, GA 30326 USA
关键词
NEGATIVE CAPACITANCE; MEMORY DEVICE; GATE-LAST; FATIGUE; MECHANISMS; INTERLAYER; ENDURANCE; IMPACT; FUTURE; FILMS;
D O I
10.1109/MNANO.2021.3098218
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
A Ferroelectric Field-Effect Transistor (FEFET) is a promising candidate for next-generation memory devices because it offers numerous advantages, such as its high speed, low energy profile, and nondestructive readout process. FEFETs merge logic and memory functionality in a single device, allowing efficient data transfer and a high packing density, which could make them vital for use in future in-memory computing architectures. Although issues related to the integration of perovskite materials in the state-of-the art semiconductor industry limited their commercial success, the discovery of ferroelectricity in CMOS-compatible doped hafnium oxides led to a re-emergence of FEFETs in advanced microelectronics. The demonstration of ferroelectricity in doped hafnia at extremely thin film thicknesses plus its low permittivity, high coercive field (Ec), environment-friendly composition, and excellent CMOS compatibility are expected to unleash the promise of FEFETs, and significant progress has been made in this regard. © 2007-2011 IEEE.
引用
收藏
页码:20 / 32
页数:13
相关论文
共 50 条
  • [41] The effect of the bottom electrode on ferroelectric tunnel junctions based on CMOS-compatible HfO2
    Goh, Youngin
    Jeon, Sanghun
    [J]. NANOTECHNOLOGY, 2018, 29 (33)
  • [42] Modeling and simulation of ionizing radiation effect on ferroelectric field-effect transistor
    Yan, Shaoan
    Li, Gang
    Guo, Hongxia
    Zhao, Wen
    Xiong, Ying
    Tang, Minghua
    Li, Zheng
    Xiao, Yongguang
    Zhang, Wanli
    Lei, Zhifeng
    [J]. JAPANESE JOURNAL OF APPLIED PHYSICS, 2016, 55 (04)
  • [43] Reconfigurable signal modulation in a ferroelectric tunnel field-effect transistor
    Zhongyunshen Zhu
    Anton E. O. Persson
    Lars-Erik Wernersson
    [J]. Nature Communications, 14 (1)
  • [44] Reconfigurable signal modulation in a ferroelectric tunnel field-effect transistor
    Zhu, Zhongyunshen
    Persson, Anton E. O.
    Wernersson, Lars-Erik
    [J]. NATURE COMMUNICATIONS, 2023, 14 (01)
  • [45] Field-Effect Transistors for Organic CMOS Technology
    Melzer, Christian
    von Seggern, Heinz
    [J]. IT-INFORMATION TECHNOLOGY, 2008, 50 (03): : 158 - 166
  • [46] Strongly modulated conductivity in a perovskite ferroelectric field-effect transistor
    I. A. Veselovskii
    I. V. Grekhov
    L. A. Delimova
    I. A. Liniichuk
    [J]. Technical Physics Letters, 2001, 27 : 17 - 19
  • [47] Reservoir computing on a silicon platform with a ferroelectric field-effect transistor
    Kasidit Toprasertpong
    Eishin Nako
    Zeyu Wang
    Ryosho Nakane
    Mitsuru Takenaka
    Shinichi Takagi
    [J]. Communications Engineering, 1 (1):
  • [48] Sector split-drain magnetic field-effect transistor based on standard CMOS technology
    Yunruo, Y
    Dazhong, Z
    Qing, G
    [J]. SENSORS AND ACTUATORS A-PHYSICAL, 2005, 121 (02) : 347 - 351
  • [49] Device modeling of ferroelectric memory field-effect transistor (FeMFET)
    Lue, HT
    Wu, CJ
    Tseng, TY
    [J]. IEEE TRANSACTIONS ON ELECTRON DEVICES, 2002, 49 (10) : 1790 - 1798
  • [50] A Retention Model for Ferroelectric-Gate Field-Effect Transistor
    Huang, Shuai
    Zhong, Xiangli
    Zhang, Yi
    Tan, Qiuhong
    Wang, Jinbin
    Zhou, Yichun
    [J]. IEEE TRANSACTIONS ON ELECTRON DEVICES, 2011, 58 (10) : 3388 - 3394