Soliton solution to generalized nonlinear disturbed Klein-Gordon equation

被引:1
|
作者
Mo, Jia-qi [1 ,2 ]
机构
[1] Anhui Normal Univ, Dept Math, Wuhu 241003, Anhui, Peoples R China
[2] Shanghai Univ SJTU, E Inst, Div Computat Sci, Shanghai 200240, Peoples R China
基金
中国国家自然科学基金;
关键词
nonlinear Klein-Gordon equation; soliton; approximate method; WAVE SOLUTIONS; BEHAVIOR;
D O I
10.1007/s10483-010-1385-x
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A generalized nonlinear disturbed Klein-Gordon equation is studied. Using the homotopic mapping method, the corresponding homotopic mapping is constructed. A suitable initial approximation is selected, and an arbitrary-order approximate solution to the soliton is calculated. A weakly disturbed equation is also studied.
引用
收藏
页码:1577 / 1584
页数:8
相关论文
共 50 条
  • [11] A collocation method for generalized nonlinear Klein-Gordon equation
    Guo, Ben-Yu
    Wang, Zhong-Qing
    [J]. ADVANCES IN COMPUTATIONAL MATHEMATICS, 2014, 40 (02) : 377 - 398
  • [12] A collocation method for generalized nonlinear Klein-Gordon equation
    Ben-Yu Guo
    Zhong-Qing Wang
    [J]. Advances in Computational Mathematics, 2014, 40 : 377 - 398
  • [13] A spline collocation approach for the numerical solution of a generalized nonlinear Klein-Gordon equation
    Khuri, S. A.
    Sayfy, A.
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2010, 216 (04) : 1047 - 1056
  • [14] NONLINEAR KLEIN-GORDON SOLITON MECHANICS
    REINISCH, G
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 1992, 6 (21): : 3395 - 3440
  • [15] A NONLINEAR KLEIN-GORDON EQUATION
    SCOTT, AC
    [J]. AMERICAN JOURNAL OF PHYSICS, 1969, 37 (01) : 52 - &
  • [16] Nonlinear Klein-Gordon equation
    [J]. Appl Math Lett, 3 (09):
  • [17] Nonlinear Klein-Gordon equation
    Adomian, G
    [J]. APPLIED MATHEMATICS LETTERS, 1996, 9 (03) : 9 - 10
  • [18] SOLITON PERTURBATION THEORY FOR THE GENERALIZED KLEIN-GORDON EQUATION WITH FULL NONLINEARITY
    Biswas, Anjan
    Yildirim, Ahmet
    Hayat, T.
    Aldossary, Omar M.
    Sassaman, Ryan
    [J]. PROCEEDINGS OF THE ROMANIAN ACADEMY SERIES A-MATHEMATICS PHYSICS TECHNICAL SCIENCES INFORMATION SCIENCE, 2012, 13 (01): : 32 - 41
  • [19] INVARIANT MANIFOLDS AROUND SOLITON MANIFOLDS FOR THE NONLINEAR KLEIN-GORDON EQUATION
    Nakanishi, K.
    Schlag, W.
    [J]. SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2012, 44 (02) : 1175 - 1210
  • [20] On nonlinear fractional Klein-Gordon equation
    Golmankhaneh, Alireza K.
    Golmankhaneh, Ali K.
    Baleanu, Dumitru
    [J]. SIGNAL PROCESSING, 2011, 91 (03) : 446 - 451