A Low-Rank Tensor Model for Hyperspectral Image Sparse Noise Removal

被引:2
|
作者
Deng, Lizhen [1 ]
Zhu, Hu [1 ]
Li, Yujie [2 ,3 ]
Yang, Zhen [1 ]
机构
[1] Nanjing Univ Posts & Telecommun, Coll Telecommun & Informat Engn, Nanjing 210003, Jiangsu, Peoples R China
[2] Yangzhou Univ, Sch Informat Engn, Yangzhou 225127, Jiangsu, Peoples R China
[3] Fukuoka Univ, Fac Engn, Fukuoka, Fukuoka 8140180, Japan
来源
IEEE ACCESS | 2018年 / 6卷
基金
中国博士后科学基金;
关键词
Hyperspectral image; sparse noise removal; low-rank; tensor; DECOMPOSITION; RECOVERY;
D O I
10.1109/ACCESS.2018.2876038
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Hyperspectral image (HSI) has been widely used in target detection and classification. However, various kinds of noise in HSIs affect the applications of HSIs. In this paper, we propose a low-rank (LR) tensor recovery model to remove noise. Considering that the HSI is a 3-D HSI data, and the underlying LR tensor property is used in the model. Then, according to the similarity of adjacent bands images, the regularization on the difference of adjacent bands images is considered. The experiments of removing noise from different noisy HSIs show that our method can achieve better performance on removing sparse noise, especially for strips removal.
引用
收藏
页码:62120 / 62127
页数:8
相关论文
共 50 条
  • [1] Sparse and Low-Rank Constrained Tensor Factorization for Hyperspectral Image Unmixing
    Zheng, Pan
    Su, Hongjun
    Du, Qian
    [J]. IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2021, 14 : 1754 - 1767
  • [2] Hyperspectral Image Denoising With Group Sparse and Low-Rank Tensor Decomposition
    Huang, Zhihong
    Li, Shutao
    Fang, Leyuan
    Li, Huali
    Benediktsson, Jon Atli
    [J]. IEEE ACCESS, 2018, 6 : 1380 - 1390
  • [3] Double-Factor-Regularized Low-Rank Tensor Factorization for Mixed Noise Removal in Hyperspectral Image
    Zheng, Yu-Bang
    Huang, Ting-Zhu
    Zhao, Xi-Le
    Chen, Yong
    He, Wei
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2020, 58 (12): : 8450 - 8464
  • [4] LOW-RANK AND SPARSE TENSOR RECOVERY FOR HYPERSPECTRAL ANOMALY DETECTION
    Dai, Jiahui
    Deng, Chenwei
    Wang, Wenzheng
    Liu, Xun
    [J]. 2017 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2017, : 1141 - 1144
  • [5] Tensor Low-Rank Constraint and l0 Total Variation for Hyperspectral Image Mixed Noise Removal
    Wang, Minghua
    Wang, Qiang
    Chanussot, Jocelyn
    [J]. IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, 2021, 15 (03) : 718 - 733
  • [6] Tensor-Based Low-Rank and Sparse Prior Information Constraints for Hyperspectral Image Denoising
    Wang, Guxi
    Han, Hongwei
    Carranza, Emmanuel John M.
    Guo, Si
    Guo, Ke
    Xiao, Keyan
    [J]. IEEE ACCESS, 2020, 8 : 102935 - 102946
  • [7] Nonlocal Tensor Sparse Representation and Low-Rank Regularization for Hyperspectral Image Compressive Sensing Reconstruction
    Xue, Jize
    Zhao, Yongqiang
    Liao, Wenzhi
    Chan, Jonathan Cheung-Wai
    [J]. REMOTE SENSING, 2019, 11 (02)
  • [8] Accurate Multiobjective Low-Rank and Sparse Model for Hyperspectral Image Denoising Method
    Wan, Yuting
    Ma, Ailong
    He, Wei
    Zhong, Yanfei
    [J]. IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2023, 27 (01) : 37 - 51
  • [9] Hyperspectral and Multispectral Image Fusion via Nonlocal Low-Rank Tensor Approximation and Sparse Representation
    Li, Xuelong
    Yuan, Yue
    Wang, Qi
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2021, 59 (01): : 550 - 562
  • [10] Single Image Highlight Removal with a Sparse and Low-Rank Reflection Model
    Guo, Jie
    Zhou, Zuojian
    Wang, Limin
    [J]. COMPUTER VISION - ECCV 2018, PT IV, 2018, 11208 : 282 - 298