Microbially Mediated Hydrogen Cycling in Deep-Sea Hydrothermal Vents

被引:34
|
作者
Adam, Nicole [1 ]
Perner, Mirjam [1 ]
机构
[1] GEOMAR Helmholtz Ctr Ocean Res Kiel, Geomicrobiol, Kiel, Germany
来源
关键词
hydrogen cycling; hydrogen consumption; hydrogenases; hydrogen oxidizers; hydrothermal vent; SULFATE-REDUCING BACTERIUM; SULFUR-OXIDIZING BACTERIA; CENTRAL INDIAN RIDGE; BLACK SMOKER CHIMNEY; MID-ATLANTIC RIDGE; SP-NOV; GEN; NOV; GEOCHEMICAL CONSTRAINTS; SP; METHANOGENIC ARCHAEBACTERIA;
D O I
10.3389/fmicb.2018.02873
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
Deep-sea hydrothermal vents may provide one of the largest reservoirs on Earth for hydrogen-oxidizing microorganisms. Depending on the type of geological setting, hydrothermal environments can be considerably enriched in hydrogen (up to millimolar concentrations). As hot, reduced hydrothermal fluids ascend to the seafloor they mix with entrained cold, oxygenated seawater, forming thermal and chemical gradients along their fluid pathways. Consequently, in these thermally and chemically dynamic habitats biochemically distinct hydrogenases (adapted to various temperature regimes, oxygen and hydrogen concentrations) from physiologically and phylogenetically diverse Bacteria and Archaea can be expected. Hydrogen oxidation is one of the important inorganic energy sources in these habitats, capable of providing relatively large amounts of energy (237 kJ/mol H-2) for driving ATP synthesis and autotrophic CO2 fixation. Therefore, hydrogen-oxidizing organisms play a key role in deep-sea hydrothermal vent ecosystems as they can be considerably involved in light-independent primary biomass production. So far, the specific role of hydrogen-utilizing microorganisms in deep-sea hydrothermal ecosystems has been investigated by isolating hydrogen-oxidizers, measuring hydrogen consumption (ex situ), studying hydrogenase gene distribution and more recently by analyzing metatranscriptomic and metaproteomic data. Here we summarize this available knowledge and discuss the advent of new techniques for the identification of novel hydrogen-uptake and - evolving enzymes from hydrothermal vent microorganisms.
引用
收藏
页数:17
相关论文
共 50 条
  • [21] Experimental ecology at deep-sea hydrothermal vents: a perspective
    Van Dover, CL
    Lutz, RA
    JOURNAL OF EXPERIMENTAL MARINE BIOLOGY AND ECOLOGY, 2004, 300 (1-2) : 273 - 307
  • [22] DEEP-SEA PRIMARY PRODUCTION AT THE GALAPAGOS HYDROTHERMAL VENTS
    KARL, DM
    WIRSEN, CO
    JANNASCH, HW
    SCIENCE, 1980, 207 (4437) : 1345 - 1347
  • [23] Antarctic Marine Biodiversity and Deep-Sea Hydrothermal Vents
    Chown, Steven L.
    PLOS BIOLOGY, 2012, 10 (01)
  • [24] Recent advances in imaging deep-sea hydrothermal vents
    Lutz, R
    Shank, T
    Rona, P
    Reed, A
    Allen, C
    Lange, W
    Low, S
    Kristof, E
    CAHIERS DE BIOLOGIE MARINE, 2002, 43 (3-4): : 267 - 269
  • [25] A review of predators and predation at deep-sea hydrothermal vents
    Voight, JR
    CAHIERS DE BIOLOGIE MARINE, 2000, 41 (02): : 155 - 166
  • [26] LARVAL DEVELOPMENT AND DISPERSAL AT DEEP-SEA HYDROTHERMAL VENTS
    LUTZ, RA
    JABLONSKI, D
    TURNER, RD
    SCIENCE, 1984, 226 (4681) : 1451 - 1454
  • [27] Thermophilic microbial communities of deep-sea hydrothermal vents
    Miroshnichenko, ML
    MICROBIOLOGY, 2004, 73 (01) : 1 - 13
  • [28] Biogeography of Persephonella in deep-sea hydrothermal vents of the Western Pacific
    Mino, Sayaka
    Makita, Hiroko
    Toki, Tomohiro
    Miyazaki, Junichi
    Kato, Shingo
    Watanabe, Hiromi
    Imachi, Hiroyuki
    Watsuji, Tomo-o
    Nunoura, Takuro
    Kojima, Shigeaki
    Sawabe, Tomoo
    Takai, Ken
    Nakagawa, Satoshi
    FRONTIERS IN MICROBIOLOGY, 2013, 4
  • [29] Archaeal diversity and community development in deep-sea hydrothermal vents
    Takai, Ken
    Nakamura, Kentaro
    CURRENT OPINION IN MICROBIOLOGY, 2011, 14 (03) : 282 - 291
  • [30] Recent progress in the microbiology of deep-sea hydrothermal vents and seeps
    Nelson, DC
    CAHIERS DE BIOLOGIE MARINE, 1998, 39 (3-4): : 373 - 378