Cross-scale global attention feature pyramid network for person search

被引:3
|
作者
Li, Yang [1 ,2 ]
Xu, Huahu [2 ,3 ]
Bian, Minjie [3 ]
Xiao, Junsheng [2 ]
机构
[1] Shanghai Jianqiao Univ, Sch Informat Technol, Shanghai 201306, Peoples R China
[2] Shanghai Univ, Sch Comp Engn & Sci, Shanghai 200444, Peoples R China
[3] Shanghai Univ, Informat Off, Shanghai 200444, Peoples R China
关键词
Person search; Global attention; Feature pyramid network; Multi-scale; Fine-grained;
D O I
10.1016/j.imavis.2021.104332
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Person search aims to locate the target person in real unconstrained scene images. It faces many challenges such as multi-scale and fine-grained. To address the challenges, a novel cross-scale global attention feature pyramid network (CSGAFPN) is proposed. Firstly, we design a novel multi-head global attention module (MHGAM), which adopts cosine similarity and sparse query location methods to effectively capture cross-scale long-distance dependence. Then, we design the CSGAFPN, which extends top-down feature pyramid network with bottom-up connections and embeds MHGAMs to the connections. CSGAFPN can capture cross-scale long-distance global correlation from multi-scale feature maps, selectively strengthen important features and restrain less important features. CSGAFPN is applied for both person detection and person re-identification (reID) sub-tasks of person search, it can well handle the multi-scale and fine-grained challenges, and significantly improve person search performance. Furthermore, the output multi-scale feature maps of CSGAFPN are processed by an adaptive feature aggregation with attention (AFAA) layer to further improve the performance. Numerous exper-iments with two public person search datasets, CUHK-SYSU and PRW, show our CSGAFPN based approach ac-quires better performance than other state-of-the-art (SOTA) person search approaches. (c) 2021 Elsevier B.V. All rights reserved.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] Scale-Insensitive Object Detection via Attention Feature Pyramid Transformer Network
    Lingling Li
    Changwen Zheng
    Cunli Mao
    Haibo Deng
    Taisong Jin
    Neural Processing Letters, 2022, 54 : 581 - 595
  • [32] A Cross-Scale Feature Aggregation Network Based on Channel-Spatial Attention for Human and Animal Identification of Life Detection Radar
    Bao, Min
    Zou, Fu
    Xing, Mengdao
    Jia, Boyang
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2023, 20
  • [33] Global Attention Pyramid Network for Semantic Segmentation
    Zhang, Na
    Li, Jun
    Li, Yongrui
    Du, Yang
    PROCEEDINGS OF THE 38TH CHINESE CONTROL CONFERENCE (CCC), 2019, : 8728 - 8732
  • [34] SAPN: Spatial Attention Pyramid Network for Cross-Domain Person Re-Identification
    Jia, Zhaoqian
    Wang, Wenchao
    Hou, Shaoqi
    Li, Ye
    Yin, Guangqiang
    WIRELESS ALGORITHMS, SYSTEMS, AND APPLICATIONS, WASA 2021, PT II, 2021, 12938 : 58 - 69
  • [35] VCAFusion: An infrared and visible image fusion network with visual perception and cross-scale attention
    Zhang, Xiaodong
    Wang, Xinrui
    Gao, Shaoshu
    Zhu, Linghan
    Wang, Shuo
    DIGITAL SIGNAL PROCESSING, 2024, 151
  • [36] Hyperspectral Image Super-Resolution Network Based on Cross-Scale Nonlocal Attention
    Li, Shuangliang
    Tian, Yugang
    Wang, Cheng
    Wu, Hongxian
    Zheng, Shaolan
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61
  • [37] Multifocal Attention-Based Cross-Scale Network for Image De-raining
    Zhang, Zheyu
    Zhu, Yurui
    Fu, Xueyang
    Xiong, Zhiwei
    Zha, Zheng-Jun
    Wu, Feng
    PROCEEDINGS OF THE 29TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2021, 2021, : 3673 - 3681
  • [38] Based on cross-scale fusion attention mechanism network for semantic segmentation for street scenes
    Ye, Xin
    Gao, Lang
    Chen, Jichen
    Lei, Mingyue
    FRONTIERS IN NEUROROBOTICS, 2023, 17
  • [39] Cross-Scale Hybrid Gaussian Attention Network for Object Detection in Remote Sensing Images
    Lin, Zhijie
    He, Zhaoshui
    Wang, Xu
    Liang, Hao
    Su, Wenqing
    Tan, Ji
    Xie, Shengli
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2024, 21 : 1 - 5
  • [40] FPANet: feature pyramid attention network for crowd counting
    Zhai, Wenzhe
    Gao, Mingliang
    Li, Qilei
    Jeon, Gwanggil
    Anisetti, Marco
    APPLIED INTELLIGENCE, 2023, 53 (16) : 19199 - 19216