Jewel: A Novel Method for Joint Estimation of Gaussian Graphical Models

被引:1
|
作者
Angelini, Claudia [1 ]
De Canditiis, Daniela [2 ]
Plaksienko, Anna [1 ,3 ]
机构
[1] CNR Napoli, Ist Applicaz Calcolo Mauro Picone, I-80131 Naples, Italy
[2] CNR Roma, Ist Applicaz Calcolo Mauro Picone, I-00185 Rome, Italy
[3] Gran Sasso Sci Inst, I-67100 Laquila, Italy
关键词
Gaussian Graphical Model; group Lasso; joint estimation; network estimation; INVERSE COVARIANCE ESTIMATION; SELECTION;
D O I
10.3390/math9172105
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we consider the problem of estimating multiple Gaussian Graphical Models from high-dimensional datasets. We assume that these datasets are sampled from different distributions with the same conditional independence structure, but not the same precision matrix. We propose jewel, a joint data estimation method that uses a node-wise penalized regression approach. In particular, jewel uses a group Lasso penalty to simultaneously guarantee the resulting adjacency matrix's symmetry and the graphs' joint learning. We solve the minimization problem using the group descend algorithm and propose two procedures for estimating the regularization parameter. Furthermore, we establish the estimator's consistency property. Finally, we illustrate our estimator's performance through simulated and real data examples on gene regulatory networks.
引用
收藏
页数:24
相关论文
共 50 条
  • [21] GEOMETRY OF MAXIMUM LIKELIHOOD ESTIMATION IN GAUSSIAN GRAPHICAL MODELS
    Uhler, Caroline
    [J]. ANNALS OF STATISTICS, 2012, 40 (01): : 238 - 261
  • [22] Robust Estimation of Tree Structured Gaussian Graphical Models
    Katiyar, Ashish
    Hoffmann, Jessica
    Caramanis, Constantine
    [J]. INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 97, 2019, 97
  • [23] Missing Values in Multiple Joint Inference of Gaussian Graphical Models
    Tozzo, Veronica
    Garbarino, Davide
    Barla, Annalisa
    [J]. INTERNATIONAL CONFERENCE ON PROBABILISTIC GRAPHICAL MODELS, VOL 138, 2020, 138 : 497 - 508
  • [24] Joint Learning of Multiple Sparse Matrix Gaussian Graphical Models
    Huang, Feihu
    Chen, Songcan
    [J]. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2015, 26 (11) : 2606 - 2620
  • [25] Approximate Bayesian estimation in large coloured graphical Gaussian models
    Li, Qiong
    Gao, Xin
    Massam, Helene
    [J]. CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2018, 46 (01): : 176 - 203
  • [26] ASYMPTOTIC NORMALITY AND OPTIMALITIES IN ESTIMATION OF LARGE GAUSSIAN GRAPHICAL MODELS
    Ren, Zhao
    Sun, Tingni
    Zhang, Cun-Hui
    Zhou, Harrison H.
    [J]. ANNALS OF STATISTICS, 2015, 43 (03): : 991 - 1026
  • [27] Consistent multiple changepoint estimation with fused Gaussian graphical models
    Gibberd, A.
    Roy, S.
    [J]. ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 2021, 73 (02) : 283 - 309
  • [28] Bayesian Uncertainty Estimation for Gaussian Graphical Models and Centrality Indices
    Jongerling, J.
    Epskamp, S.
    Williams, D. R.
    [J]. MULTIVARIATE BEHAVIORAL RESEARCH, 2023, 58 (02) : 311 - 339
  • [29] Marginal Likelihoods for Distributed Parameter Estimation of Gaussian Graphical Models
    Meng, Zhaoshi
    Wei, Dennis
    Wiesel, Ami
    Hero, Alfred O., III
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2014, 62 (20) : 5425 - 5438
  • [30] Consistent multiple changepoint estimation with fused Gaussian graphical models
    A. Gibberd
    S. Roy
    [J]. Annals of the Institute of Statistical Mathematics, 2021, 73 : 283 - 309