Genome-wide detection of high abundance N6-methyladenosine sites by microarray

被引:13
|
作者
Li, Yue [1 ]
Wang, Yang [2 ]
Zhang, Zhaolei [1 ,3 ]
Zamudio, Alicia Viridiana [4 ]
Zhao, Jing Crystal [2 ]
机构
[1] Univ Toronto, Dept Comp Sci, Toronto, ON M5S 3G4, Canada
[2] Sanford Burnham Med Res Inst, Tumor Initiat & Maintenance Program, San Diego, CA 92037 USA
[3] Univ Toronto, Banting & Best Dept Med Res, Donnelly Ctr Cellular & Biomol Res, Dept Mol Genet, Toronto, ON M5S 3E1, Canada
[4] San Diego State Univ, Dept Biol, San Diego, CA 92115 USA
基金
芬兰科学院; 加拿大自然科学与工程研究理事会;
关键词
N-6-methyladenosine; two-color microarray; RNA methylation; METTL3; METTL14; mouse embryonic stem cells; MESSENGER-RNA METHYLATION; EMBRYONIC STEM-CELLS; NUCLEAR-RNA; EXPRESSION; RESOLUTION; MICRORNAS; REVEALS; N6-METHYLADENOSINE; M(6)A-SEQ; SINGLE;
D O I
10.1261/rna.051474.115
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
N-6-methyladenosine (m(6)A), the most abundant internal RNA modification, functions in diverse biological processes, including regulation of embryonic stem cell self-renewal and differentiation. As yet, methods to detect m(6)A in the transcriptome rely on the availability and quality of an m(6)A antibody and are often associated with a high rate of false positives. Here, based on our observation that m(6)A interferes with A-T/U pairing, we report a microarray-based technology to map m(6)A sites in mouse embryonic stem cells. We identified 72 unbiased sites exhibiting high m(6)A levels from 66 PolyA RNAs. Bioinformatics analyses suggest identified sites are enriched on developmental regulators and may in some contexts modulate microRNA/mRNA interactions. Overall, we have developed microarray-based technology to capture highly enriched m(6)A sites in the mammalian transcriptome. This method provides an alternative means to identify m(6)A sites for certain applications.
引用
收藏
页码:1511 / 1518
页数:8
相关论文
共 50 条
  • [21] N6-methyladenosine regulates RNA abundance of SARS-CoV-2
    Ting Zhang
    Ying Yang
    Zichun Xiang
    Chun-Chun Gao
    Wenjing Wang
    Conghui Wang
    Xia Xiao
    Xing Wang
    Wei-Nan Qiu
    Wen-Jie Li
    Lili Ren
    Mingkun Li
    Yong-Liang Zhao
    Yu-Sheng Chen
    Jianwei Wang
    Yun-Gui Yang
    Cell Discovery, 7
  • [22] N6-methyladenosine–encoded epitranscriptomics
    Nian Liu
    Tao Pan
    Nature Structural & Molecular Biology, 2016, 23 : 98 - 102
  • [23] N6-methyladenosine and Neurological Diseases
    Zhang, Nan
    Ding, Chunhong
    Zuo, Yuxin
    Peng, Yu
    Zuo, Lielian
    MOLECULAR NEUROBIOLOGY, 2022, 59 (03) : 1925 - 1937
  • [24] Transcriptome-Wide Mapping of N6-Methyladenosine by m6A-Seq
    Dominissini, Dan
    Moshitch-Moshkovitz, Sharon
    Amariglio, Ninette
    Rechavi, Gideon
    RNA MODIFICATION, 2015, 560 : 131 - 147
  • [25] N6-methyladenosine and Neurological Diseases
    Nan Zhang
    Chunhong Ding
    Yuxin Zuo
    Yu Peng
    Lielian Zuo
    Molecular Neurobiology, 2022, 59 : 1925 - 1937
  • [26] N6-Methyladenosine and Viral Infection
    Dang, Wei
    Xie, Yan
    Cao, Pengfei
    Xin, Shuyu
    Wang, Jia
    Li, Shen
    Li, Yanling
    Lu, Jianhong
    FRONTIERS IN MICROBIOLOGY, 2019, 10
  • [27] Deep learning based method for predicting DNA N6-methyladenosine sites
    Han, Ke
    Wang, Jianchun
    Chu, Ying
    Liao, Qian
    Ding, Yijie
    Zheng, Dequan
    Wan, Jie
    Guo, Xiaoyi
    Zou, Quan
    METHODS, 2024, 230 : 91 - 98
  • [28] Transcriptome-wide reprogramming of N6-methyladenosine modification by the mouse microbiome
    Wang, Xiaoyun
    Li, Yan
    Chen, Wenjun
    Shi, Hailing
    Eren, A. Murat
    Morozov, Aleksey
    He, Chuan
    Luo, Guan-Zheng
    Pan, Tao
    CELL RESEARCH, 2019, 29 (02) : 167 - 170
  • [29] Genome-wide sequence identification and expression analysis of N6-methyladenosine demethylase in sugar beet (Beta vulgaris L.) under salt stress
    Cui, Jie
    Liu, Junli
    Li, Junliang
    Cheng, Dayou
    Dai, Cuihong
    PEERJ, 2022, 10
  • [30] Transcriptome-wide reprogramming of N6-methyladenosine modification by the mouse microbiome
    Xiaoyun Wang
    Yan Li
    Wenjun Chen
    Hailing Shi
    A. Murat Eren
    Aleksey Morozov
    Chuan He
    Guan-Zheng Luo
    Tao Pan
    Cell Research, 2019, 29 : 167 - 170