Level Set Estimation with Search Space Warping

被引:2
|
作者
Senadeera, Manisha [1 ]
Rana, Santu [1 ]
Gupta, Sunil [1 ]
Venkatesh, Svetha [1 ]
机构
[1] Deakin Univ, Appl Artificial Intelligence Inst A2I2, Geelong, Vic, Australia
基金
澳大利亚研究理事会;
关键词
Level set estimation; Gaussian processes; Bayesian optimisation;
D O I
10.1007/978-3-030-47436-2_62
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper proposes a new method of level set estimation through search space warping using Bayesian optimisation. Instead of a single solution, a level set offers a range of solutions each meeting the goal and thus provides useful knowledge in tolerance for industrial product design. The proposed warping scheme increases performance of existing level set estimation algorithms in particular the ambiguity acquisition function. This is done by constructing a complex covariance function to warp the Gaussian Process. The covariance function is designed to expand regions deemed to have a high potential for being at the desired level whilst contracting others. Subsequently, Bayesian optimisation using this covariance function ensures that the level set is sampled more thoroughly. Experimental results demonstrate increased efficiency of level set discovery using the warping scheme. Theoretical analysis concerning warping the covariance function, maximum information gain and bounds on the cumulative regret are provided.
引用
收藏
页码:827 / 839
页数:13
相关论文
共 50 条
  • [31] A level set reduced basis approach to parameter estimation
    Grepl, Martin A.
    Veroy, Karen
    COMPTES RENDUS MATHEMATIQUE, 2011, 349 (23-24) : 1229 - 1232
  • [32] Depth level set estimation and associated risk measures
    Armaut, Sara
    Diel, Roland
    Laloe, Thomas
    ELECTRONIC JOURNAL OF STATISTICS, 2022, 16 (02): : 6584 - 6630
  • [33] Estimation of parameters appearing in the level set evolution equation
    Berg, Jordan M.
    Proceedings of the IEEE Conference on Decision and Control, 1998, 2 : 2323 - 2328
  • [34] FAST LEVEL SET ESTIMATION FROM PROJECTION MEASUREMENTS
    Krishnamurthy, Kalyani
    Bajwa, Waheed U.
    Willett, Rebecca
    Calderbank, Robert
    2011 IEEE STATISTICAL SIGNAL PROCESSING WORKSHOP (SSP), 2011, : 585 - 588
  • [35] Estimation of level set trees using adaptive partitions
    Lasse Holmström
    Kyösti Karttunen
    Jussi Klemelä
    Computational Statistics, 2017, 32 : 1139 - 1163
  • [36] Estimation of parameters appearing in the level set evolution equation
    Berg, JM
    PROCEEDINGS OF THE 37TH IEEE CONFERENCE ON DECISION AND CONTROL, VOLS 1-4, 1998, : 2323 - 2328
  • [37] Modified Gradient Search for Level Set Based Image Segmentation
    Andersson, Thord
    Lathen, Gunnar
    Lenz, Reiner
    Borga, Magnus
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2013, 22 (02) : 621 - 630
  • [38] Level set estimation using uncoordinated mobile sensors
    Gupta, Gagan Raj
    Ramanathan, Parmesh
    AD-HOC, MOBILE, AND WIRELESS NETWORKS, PROCEEDINGS, 2007, 4686 : 101 - +
  • [39] Polynomial level-set method for attractor estimation
    Wang, Ta-Chung
    Lall, Sanjay
    West, Matthew
    JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2012, 349 (09): : 2783 - 2798
  • [40] Estimation of level set trees using adaptive partitions
    Holmstrom, Lasse
    Karttunen, Kyosti
    Klemela, Jussi
    COMPUTATIONAL STATISTICS, 2017, 32 (03) : 1139 - 1163