On the composite Pexider equation modulo a subgroup

被引:0
|
作者
Bajger, M [1 ]
机构
[1] Flinders Univ S Australia, Sch Informat & Engn, Adelaide, SA 5001, Australia
来源
PUBLICATIONES MATHEMATICAE-DEBRECEN | 2004年 / 64卷 / 1-2期
关键词
Pexider functional equation; Pexider difference; groupoid;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let X, Y, Z be arbitrary nonempty sets, E be a subgroup of the group of all bijections of Z (with composition of functions as the group operation), and K be a nonempty set with a binary operation defined on D(K) subset of K-2. Conditions are established under which functions F, G, H mapping K into Z(X), Y-X, Z(Y), resp., and satisfying the generalized composite Pexider equation F(st) = p(s, t) o H(s) o G(t), (s, t) E D(K), for some function p, : D(K) --> E, can be represented in terms of solutions of the corresponding generalized Cauchy equation.
引用
收藏
页码:39 / 61
页数:23
相关论文
共 50 条