Bootstrap Estimation of Confidence Intervals on Mutation Rate Ratios

被引:3
|
作者
Russell, Matthew S. [1 ]
March, John C. [1 ]
机构
[1] Cornell Univ, Dept Biol & Environm Engn, Ithaca, NY 14853 USA
关键词
Monte Carlo simulation; statistical analysis; fluctuation test; FLUCTUATION ANALYSIS; RESISTANCE; MUTANTS; NUMBER; ASSAY; GENE;
D O I
10.1002/em.20636
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The fluctuation test is a useful tool for estimating the mutation rate of cells. However, statistical methods for comparing mutation rate estimates between different strains or conditions have not yet been fully developed. Methods exist for placing confidence intervals on estimates of the number of mutational events in cultures for a given strain and set of conditions, but placing confidence intervals on mutation rate is complicated by differences in the final number of cells in culture between parallel cultures. Additionally, confidence intervals on individual mutation rate estimates are not always the most useful statistical tool when comparing two or more different strains or conditions. We present a bootstrap method for estimating confidence intervals on the quotient of two mutation rates determined from two fluctuation test experiments using experimental and control strains or conditions. We use Monte Carlo simulations to validate this method over a wide range of mutation rates and for empirically measured variation in the estimates of final number of cells in culture. Furthermore, we provide the computational tools to implement the bootstrap method described here on experimental fluctuation test data and to evaluate this method for experimental parameters other than those considered herein. Environ. Mol. Mutagen. 52: 385-396, 2011. (C) 2010 Wiley-Liss, Inc.
引用
收藏
页码:385 / 396
页数:12
相关论文
共 50 条
  • [31] A REVIEW OF BOOTSTRAP CONFIDENCE-INTERVALS
    DICICCIO, TJ
    ROMANO, JP
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-METHODOLOGICAL, 1988, 50 (03): : 338 - 354
  • [32] Test inversion bootstrap confidence intervals
    Carpenter, J
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 1999, 61 : 159 - 172
  • [33] On the Admissibility of Simultaneous Bootstrap Confidence Intervals
    Gao, Xin
    Konietschke, Frank
    Li, Qiong
    [J]. SYMMETRY-BASEL, 2021, 13 (07):
  • [34] WILD CLUSTER BOOTSTRAP CONFIDENCE INTERVALS
    Mackinnon, James G.
    [J]. ACTUALITE ECONOMIQUE, 2020, 96 (04): : 721 - 743
  • [35] Comparison of parametric and bootstrap approaches to obtaining confidence intervals for logspline density estimation
    Kooperberg, C
    Stone, CJ
    [J]. JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2004, 13 (01) : 106 - 122
  • [36] Nonparametric estimation and bootstrap confidence intervals for the optimal maintenance time of a repairable system
    Gilardoni, Gustavo L.
    de Oliveira, Maristela D.
    Colosimo, Enrico A.
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2013, 63 : 113 - 124
  • [37] Confidence Intervals Estimation for Reliability Data of Power Distribution Equipments Using Bootstrap
    Rodrigues, Anselmo Barbosa
    da Silva, Maria da Guia
    [J]. IEEE TRANSACTIONS ON POWER SYSTEMS, 2013, 28 (03) : 3283 - 3291
  • [38] Temporal Exponential Random Graph Models with btergm: Estimation and Bootstrap Confidence Intervals
    Leifeld, Philip
    Cranmer, Skyler J.
    Desmarais, Bruce A.
    [J]. JOURNAL OF STATISTICAL SOFTWARE, 2018, 83 (06):
  • [39] BOOTSTRAP PERCENTILE CONFIDENCE INTERVALS FOR ACTUAL ERROR RATE IN LINEAR DISCRIMINANT ANALYSIS
    Atakan, Cemal
    [J]. HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2009, 38 (03): : 357 - 372
  • [40] BOOTSTRAP METHODS - A REVIEW OF BOOTSTRAP CONFIDENCE-INTERVALS - DISCUSSION
    KENT, JT
    DAVISON, AC
    SILVERMAN, BW
    YOUNG, GA
    DANIELS, HE
    TONG, H
    GARTHWAITE, PH
    BUCKLAND, ST
    BERAN, R
    HALL, P
    KOSLOW, S
    STEWART, DW
    TIBSHIRANI, RJ
    TITTERINGTON, DM
    VERRALL, RJ
    WYNN, HP
    WU, CFJ
    HINKLEY, D
    DICICCIO, TJ
    ROMANO, JP
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-METHODOLOGICAL, 1988, 50 (03): : 355 - 370