Bootstrap Estimation of Confidence Intervals on Mutation Rate Ratios

被引:3
|
作者
Russell, Matthew S. [1 ]
March, John C. [1 ]
机构
[1] Cornell Univ, Dept Biol & Environm Engn, Ithaca, NY 14853 USA
关键词
Monte Carlo simulation; statistical analysis; fluctuation test; FLUCTUATION ANALYSIS; RESISTANCE; MUTANTS; NUMBER; ASSAY; GENE;
D O I
10.1002/em.20636
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The fluctuation test is a useful tool for estimating the mutation rate of cells. However, statistical methods for comparing mutation rate estimates between different strains or conditions have not yet been fully developed. Methods exist for placing confidence intervals on estimates of the number of mutational events in cultures for a given strain and set of conditions, but placing confidence intervals on mutation rate is complicated by differences in the final number of cells in culture between parallel cultures. Additionally, confidence intervals on individual mutation rate estimates are not always the most useful statistical tool when comparing two or more different strains or conditions. We present a bootstrap method for estimating confidence intervals on the quotient of two mutation rates determined from two fluctuation test experiments using experimental and control strains or conditions. We use Monte Carlo simulations to validate this method over a wide range of mutation rates and for empirically measured variation in the estimates of final number of cells in culture. Furthermore, we provide the computational tools to implement the bootstrap method described here on experimental fluctuation test data and to evaluate this method for experimental parameters other than those considered herein. Environ. Mol. Mutagen. 52: 385-396, 2011. (C) 2010 Wiley-Liss, Inc.
引用
收藏
页码:385 / 396
页数:12
相关论文
共 50 条
  • [1] Bootstrap confidence intervals for ratios of expectations
    Choquet, Denis
    L'Ecuyer, Pierre
    Léger, Christian
    [J]. ACM Transactions on Modeling and Computer Simulation, 1999, 9 (04): : 326 - 348
  • [2] Confidence intervals for excess Sharpe ratios: A bootstrap approach
    Bagamery, BD
    [J]. DECISION SCIENCES INSTITUTE, 1997 ANNUAL MEETING, PROCEEDINGS, VOLS 1-3, 1997, : 997 - 999
  • [3] Bootstrap confidence intervals
    DiCiccio, TJ
    Efron, B
    [J]. STATISTICAL SCIENCE, 1996, 11 (03) : 189 - 212
  • [4] Bootstrap approaches for estimation and confidence intervals of long memory processes
    Bisaglia, Luisa
    Bordignon, Silvano
    Cecchinato, Nedda
    [J]. JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2010, 80 (09) : 959 - 978
  • [5] BETTER BOOTSTRAP CONFIDENCE-INTERVALS - BALM FOR BOOTSTRAP CONFIDENCE-INTERVALS - COMMENT
    PETERS, SC
    FREEDMAN, DA
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1987, 82 (397) : 186 - 187
  • [6] BETTER BOOTSTRAP CONFIDENCE-INTERVALS FOR REGRESSION CURVE ESTIMATION
    HARDLE, W
    HUET, S
    JOLIVET, E
    [J]. STATISTICS, 1995, 26 (04) : 287 - 306
  • [7] BOOTSTRAP CONFIDENCE-INTERVALS
    BABU, GJ
    BOSE, A
    [J]. STATISTICS & PROBABILITY LETTERS, 1988, 7 (02) : 151 - 160
  • [8] BOOTSTRAP CONFIDENCE-INTERVALS AND BOOTSTRAP APPROXIMATIONS
    DICICCIO, T
    TIBSHIRANI, R
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1987, 82 (397) : 163 - 170
  • [9] Bootstrap Confidence Intervals: Comment
    Lee, S. M. S.
    Young, G. A.
    [J]. Statistical Science, 11 (03):
  • [10] ON THE BOOTSTRAP AND CONFIDENCE-INTERVALS
    HALL, P
    [J]. ANNALS OF STATISTICS, 1986, 14 (04): : 1431 - 1452