Penalized estimation for proportional hazards models with current status data

被引:11
|
作者
Lu, Minggen [1 ]
Li, Chin-Shang [2 ]
机构
[1] Univ Nevada, Sch Community Hlth Sci, Reno, NV 89557 USA
[2] Univ Calif Davis, Div Biostat, Dept Publ Hlth Sci, Davis, CA 95616 USA
关键词
current status data; efficient estimation; goodness-of-fit; isotonic regression; monotone B-spline; penalized estimation; SEMIPARAMETRIC REGRESSION-MODELS; POLYNOMIAL SPLINE ESTIMATION; GENERALIZED ADDITIVE-MODELS; INTERVAL-CENSORED DATA; GOODNESS-OF-FIT; LIKELIHOOD-ESTIMATION; PARAMETER-ESTIMATION; EFFICIENT ESTIMATION; EM ALGORITHM; B-SPLINES;
D O I
10.1002/sim.7489
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
We provide a simple and practical, yet flexible, penalized estimation method for a Cox proportional hazards model with current status data. We approximate the baseline cumulative hazard function by monotone B-splines and use a hybrid approach based on the Fisher-scoring algorithm and the isotonic regression to compute the penalized estimates. We show that the penalized estimator of the nonparametric component achieves the optimal rate of convergence under some smooth conditions and that the estimators of the regression parameters are asymptotically normal and efficient. Moreover, a simple variance estimation method is considered for inference on the regression parameters. We perform 2 extensive Monte Carlo studies to evaluate the finite-sample performance of the penalized approach and compare it with the 3 competing R packages: C1.coxph, intcox, and ICsurv. A goodness-of-fit test and model diagnostics are also discussed. The methodology is illustrated with 2 real applications.
引用
收藏
页码:4893 / 4907
页数:15
相关论文
共 50 条
  • [1] Efficient estimation for the proportional hazards model with bivariate current status data
    Lianming Wang
    Jianguo Sun
    Xingwei Tong
    [J]. Lifetime Data Analysis, 2008, 14 : 134 - 153
  • [2] Efficient estimation for the proportional hazards model with bivariate current status data
    Wang, Lianming
    Sun, Jianguo
    Tong, Xingwei
    [J]. LIFETIME DATA ANALYSIS, 2008, 14 (02) : 134 - 153
  • [3] Efficient estimation for the proportional hazards model with competing risks and current status data
    Sun, Jianguo
    Shen, Junshan
    [J]. CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2009, 37 (04): : 592 - 606
  • [4] Penalized likelihood estimation of the proportional hazards model for survival data with interval censoring
    Ma, Jun
    Couturier, Dominique-Laurent
    Heritier, Stephane
    Marschner, Ian C.
    [J]. INTERNATIONAL JOURNAL OF BIOSTATISTICS, 2022, 18 (02): : 553 - 575
  • [5] Penalized and Shrinkage Estimation in the Cox Proportional Hazards Model
    Hossain, Shakhawat
    Ahmed, S. Ejaz
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2014, 43 (05) : 1026 - 1040
  • [6] A partially linear proportional hazards model for current status data
    Lu, Minggen
    McMahan, Christopher S.
    [J]. BIOMETRICS, 2018, 74 (04) : 1240 - 1249
  • [7] PROPORTIONAL HAZARDS MODELS FOR CURRENT STATUS DATA - APPLICATION TO THE STUDY OF AGE AT WEANING DIFFERENTIALS IN PAKISTAN
    DIAMOND, I
    MCDONALD, JW
    SHAH, I
    [J]. POPULATION INDEX, 1984, 50 (03) : 437 - 437
  • [8] PROPORTIONAL HAZARDS MODELS FOR CURRENT STATUS DATA - APPLICATION TO THE STUDY OF DIFFERENTIALS IN AGE AT WEANING IN PAKISTAN
    DIAMOND, ID
    MCDONALD, JW
    SHAH, IH
    [J]. DEMOGRAPHY, 1986, 23 (04) : 607 - 620
  • [9] Adaptive penalized M-estimation with current status data
    Shuangge Ma
    Michael R. Kosorok
    [J]. Annals of the Institute of Statistical Mathematics, 2006, 58 : 511 - 526
  • [10] Efficient estimation of a varying-coefficient partially linear proportional hazards model with current status data
    Yang, Jun-Qiang
    Dong, Yuan
    Singh, Radhey
    Dong, Cheng
    Lu, Xuewen
    [J]. JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2020, 90 (01) : 90 - 111