Understanding Self-Supervised Learning Dynamics without Contrastive Pairs

被引:0
|
作者
Tian, Yuandong [1 ]
Chen, Xinlei [1 ]
Ganguli, Surya [1 ,2 ]
机构
[1] Facebook AI Res, Menlo Pk, CA 94025 USA
[2] Stanford Univ, Stanford, CA 94305 USA
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
While contrastive approaches of self-supervised learning (SSL) learn representations by minimizing the distance between two augmented views of the same data point (positive pairs) and maximizing views from different data points (negative pairs), recent non-contrastive SSL (e.g., BYOL and SimSiam) show remarkable performance without negative pairs, with an extra learnable predictor and a stop-gradient operation. A fundamental question arises: why do these methods not collapse into trivial representations? We answer this question via a simple theoretical study and propose a novel approach, DirectPred, that directly sets the linear predictor based on the statistics of its inputs, without gradient training On ImageNet, it performs comparably with more complex two-layer non-linear predictors that employ BatchNorm and outperforms a linear predictor by 2.5% in 300-epoch training (and 5% in 60-epoch). DirectPred is motivated by our theoretical study of the nonlinear learning dynamics of non-contrastive SSL in simple linear networks. Our study yields conceptual insights into how non-contrastive SSL methods learn, how they avoid representational collapse, and how multiple factors, like predictor networks, stop-gradients, exponential moving averages, and weight decay all come into play. Our simple theory recapitulates the results of real-world ablation studies in both STL-10 and ImageNet. Code is released(1).
引用
收藏
页码:7279 / 7289
页数:11
相关论文
共 50 条
  • [1] Self-supervised Variational Contrastive Learning with Applications to Face Understanding
    Yavuz, Mehmet Can
    Yanikoglu, Berrin
    [J]. 2024 IEEE 18TH INTERNATIONAL CONFERENCE ON AUTOMATIC FACE AND GESTURE RECOGNITION, FG 2024, 2024,
  • [2] Toward Understanding the Feature Learning Process of Self-supervised Contrastive Learning
    Wen, Zixin
    Li, Yuanzhi
    [J]. INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 139, 2021, 139
  • [3] RegionCL: Exploring Contrastive Region Pairs for Self-supervised Representation Learning
    Xu, Yufei
    Zhang, Qiming
    Zhang, Jing
    Tao, Dacheng
    [J]. COMPUTER VISION - ECCV 2022, PT XXXIII, 2022, 13693 : 477 - 494
  • [4] Adversarial Self-Supervised Contrastive Learning
    Kim, Minseon
    Tack, Jihoon
    Hwang, Sung Ju
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS (NEURIPS 2020), 2020, 33
  • [5] A Survey on Contrastive Self-Supervised Learning
    Jaiswal, Ashish
    Babu, Ashwin Ramesh
    Zadeh, Mohammad Zaki
    Banerjee, Debapriya
    Makedon, Fillia
    [J]. TECHNOLOGIES, 2021, 9 (01)
  • [6] Self-Supervised Learning: Generative or Contrastive
    Liu, Xiao
    Zhang, Fanjin
    Hou, Zhenyu
    Mian, Li
    Wang, Zhaoyu
    Zhang, Jing
    Tang, Jie
    [J]. IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2023, 35 (01) : 857 - 876
  • [7] Contrastive Self-supervised Learning for Graph Classification
    Zeng, Jiaqi
    Xie, Pengtao
    [J]. THIRTY-FIFTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THIRTY-THIRD CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE AND THE ELEVENTH SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2021, 35 : 10824 - 10832
  • [8] A comprehensive perspective of contrastive self-supervised learning
    Songcan CHEN
    Chuanxing GENG
    [J]. Frontiers of Computer Science., 2021, (04) - 104
  • [9] On Compositions of Transformations in Contrastive Self-Supervised Learning
    Patrick, Mandela
    Asano, Yuki M.
    Kuznetsova, Polina
    Fong, Ruth
    Henriques, Joao F.
    Zweig, Geoffrey
    Vedaldi, Andrea
    [J]. 2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), 2021, : 9557 - 9567
  • [10] Similarity Contrastive Estimation for Self-Supervised Soft Contrastive Learning
    Denize, Julien
    Rabarisoa, Jaonary
    Orcesi, Astrid
    Herault, Romain
    Canu, Stephane
    [J]. 2023 IEEE/CVF WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION (WACV), 2023, : 2705 - 2715