Prediction of Oncotype DX recurrence score using deep multi-layer perceptrons in estrogen receptor-positive, HER2-negative breast cancer

被引:23
|
作者
Baltres, Aline [1 ]
Al Masry, Zeina [2 ]
Zemouri, Ryad [3 ]
Valmary-Degano, Severine [4 ]
Arnould, Laurent [5 ]
Zerhouni, Noureddine [2 ]
Devalland, Christine [1 ]
机构
[1] Nord Franche Comte Hosp, Dept Pathol, 100 Route Moval,CS 10499 Trevenans, F-90015 Belfort, France
[2] Univ Bourgogne Franche Comte, FEMTO ST Inst, ENSMM, CNRS, Besancon, France
[3] HESAM Univ, CEDRIC Lab Conservatoire Natl Arts & Metiers CNAM, Paris, France
[4] Univ Hosp, Dept Pathol, Grenoble, France
[5] Ctr Georges Francois Leclerc, Dept Pathol, Dijon, France
关键词
Oncotype DX; Breast cancer; Deep multi-layer perceptrons; Prognostic factor; Histopathological feature; GENE-EXPRESSION; PROGESTERONE-RECEPTOR; ASSAY; EQUATIONS; THERAPY; BENEFIT; GRADE; WOMEN; KI67;
D O I
10.1007/s12282-020-01100-4
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Oncotype DX (ODX) is a multi-gene expression signature designed for estrogen receptor (ER)-positive and human epidermal growth factor receptor 2 (HER2)-negative breast cancer patients to predict the recurrence score (RS) and chemotherapy (CT) benefit. The aim of our study is to develop a prediction tool for the three RS's categories based on deep multi-layer perceptrons (DMLP) and using only the morphoimmunohistological variables. We performed a retrospective cohort of 320 patients who underwent ODX testing from three French hospitals. Clinico-pathological characteristics were recorded. We built a supervised machine learning classification model using Matlab software with 152 cases for the training and 168 cases for the testing. Three classifiers were used to learn the three risk categories of the ODX, namely the low, intermediate, and high risk. Experimental results provide the area under the curve (AUC), respectively, for the three risk categories: 0.63 [95% confidence interval: (0.5446, 0.7154), p < 0.001], 0.59 [95% confidence interval: (0.5031, 0.6769), p < 0.001], 0.75 [95% confidence interval: (0.6184, 0.8816), p < 0.001]. Concordance rate between actual RS and predicted RS ranged from 53 to 56% for each class between DMLP and ODX. The concordance rate of low and intermediate combined risk group was 85%. We developed a predictive machine learning model that could help to define patient's RS. Moreover, we integrated histopathological data and DMLP results to select tumor for ODX testing. Thus, this process allows more relevant use of histopathological data, and optimizes and enhances this information.
引用
收藏
页码:1007 / 1016
页数:10
相关论文
共 50 条
  • [21] Systemic Therapy for Estrogen Receptor-Positive, HER2-Negative Breast Cancer REPLY
    Burstein, Harold J.
    [J]. NEW ENGLAND JOURNAL OF MEDICINE, 2021, 384 (12): : 1176 - 1177
  • [22] Palbociclib for the Treatment of Estrogen Receptor-Positive, HER2-Negative Metastatic Breast Cancer
    Morikawa, Aki
    Henry, N. Lynn
    [J]. CLINICAL CANCER RESEARCH, 2015, 21 (16) : 3591 - 3596
  • [23] Oncotype DX score in hormone receptor-positive/HER2-positive breast cancer: A SEER analysis.
    Qasrawi, Ayman
    Myint, Zin
    Alnimer, Yanal Mufeed
    Romond, Edward H.
    [J]. JOURNAL OF CLINICAL ONCOLOGY, 2019, 37 (15)
  • [24] Prediction of the 21-gene recurrence score by a non-genomic approach in stage I estrogen receptor-positive, HER2-negative breast cancer
    Le Du, F.
    Takeo, F.
    Park, M.
    Hess, K. R.
    Liu, D.
    Jackson, R.
    Mylander, C.
    Rosman, M.
    Raghavendra, A.
    Tafra, L.
    Ueno, N. T.
    [J]. ANNALS OF ONCOLOGY, 2020, 31 : S19 - S20
  • [25] Clinicopathological factors predicting early and late distant recurrence in estrogen receptor-positive, HER2-negative breast cancer
    Hiroko Yamashita
    Akiko Ogiya
    Tadahiko Shien
    Yoshiya Horimoto
    Norikazu Masuda
    Touko Inao
    Tomofumi Osako
    Masato Takahashi
    Yumi Endo
    Mitsuchika Hosoda
    Naoko Ishida
    Rie Horii
    Kieko Yamazaki
    Yuichiro Miyoshi
    Hiroyuki Yasojima
    Nobumoto Tomioka
    [J]. Breast Cancer, 2016, 23 : 830 - 843
  • [26] Clinicopathological factors predicting early and late distant recurrence in estrogen receptor-positive, HER2-negative breast cancer
    Yamashita, Hiroko
    Ogiya, Akiko
    Shien, Tadahiko
    Horimoto, Yoshiya
    Masuda, Norikazu
    Inao, Touko
    Osako, Tomofumi
    Takahashi, Masato
    Endo, Yumi
    Hosoda, Mitsuchika
    Ishida, Naoko
    Horii, Rie
    Yamazaki, Kieko
    Miyoshi, Yuichiro
    Yasojima, Hiroyuki
    Tomioka, Nobumoto
    [J]. BREAST CANCER, 2016, 23 (06) : 830 - 843
  • [27] The natural history of untreated estrogen receptor-positive, Her2-negative invasive breast cancer
    Kristin E. Rojas
    Donna-Marie Manasseh
    Mary Rojas
    Andrea Mattocks
    Leah Portnow
    Sarah Kantharia
    Natalie Zelenko
    Christina Giuliano
    Patrick I. Borgen
    [J]. Breast Cancer Research and Treatment, 2020, 182 : 79 - 83
  • [28] Discordant classification and outcomes between Prosigna and Oncotype Dx Recurrence Score for ER-positive, HER2-negative, node-negative breast cancer
    Sestak, Ivana
    Ferree, Sean
    Shemesh, Itay
    Buckingham, Wesley
    Cuzick, Jack
    Dowsett, Mitchell
    [J]. CANCER RESEARCH, 2020, 80 (04)
  • [29] The Evolving Use of SERDs in Estrogen Receptor-Positive, HER2-Negative Metastatic Breast Cancer
    Jeselsohn, Rinath M.
    [J]. CLINICAL ADVANCES IN HEMATOLOGY & ONCOLOGY, 2021, 19 (07) : 428 - 431
  • [30] Spatial interplay of lymphocytes and fibroblasts in estrogen receptor-positive HER2-negative breast cancer
    Nederlof, I
    Hajizadeh, S.
    Sobhani, F.
    Raza, S. E. A.
    AbdulJabbar, K.
    Harkes, R.
    van de Vijver, M. J.
    Salgado, R.
    Desmedt, C.
    Kok, M.
    Yuan, Y.
    Horlings, H. M.
    [J]. NPJ BREAST CANCER, 2022, 8 (01)