Tensor Fields on C1 Fuzzy Compact Manifolds

被引:0
|
作者
Xu, Chuan-Yu [1 ]
机构
[1] Zhejiang Gongshang Univ, Math Dept, Wen Er Rd,149, Hangzhou 310012, Zhejiang, Peoples R China
关键词
C-1 fuzzy compact manifolds; Tensor fields; Fuzzy localization; Local expression;
D O I
10.1145/3175603.3175625
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper presents the definition of tensor fields of type (r, s) on C-1 fuzzy compact manifolds, and in view of the fact that the definition is abstract concept, therefore presents the theorem which concretely shows the local expressions of tensor fields of type (r, s). The key of the proof of the theorem lies in the fuzzy localization, and the fuzzification of tensor fields of ordinary manifolds. This paper provides the new structure of tensor fields to C-1 fuzzy compact manifolds.
引用
收藏
页码:75 / 78
页数:4
相关论文
共 50 条
  • [31] On the C1 normal forms for hyperbolic vector fields
    Ren, ZH
    Yang, JH
    COMPTES RENDUS MATHEMATIQUE, 2003, 336 (09) : 709 - 712
  • [32] The Poincaré inequality for C1,α-smooth vector fields
    S. G. Basalaev
    Siberian Mathematical Journal, 2014, 55 : 215 - 229
  • [33] Homoclinic classes for generic C1 vector fields
    Carballo, CM
    Morales, CA
    Pacifico, MJ
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2003, 23 : 403 - 415
  • [34] Compact lcK manifolds with parallel vector fields
    Moroianu, Andrei
    COMPLEX MANIFOLDS, 2015, 2 (01): : 26 - 33
  • [36] Killing vector fields on compact Finsler manifolds
    Li, Jinling
    Qiu, Chunhui
    Zhong, Tongde
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 2016, 88 (1-2): : 3 - 19
  • [37] Local conjugacy theorems for C1 operators between Banach manifolds
    Li, Qiang
    Pei, Donghe
    JOURNAL OF NONLINEAR SCIENCES AND APPLICATIONS, 2016, 9 (03): : 1341 - 1348
  • [38] Persistence of C1 Inertial Manifolds Under Small Random Perturbations
    Shen, B. Jun
    Zhao, Junyilang
    Lu, Kening
    JOURNAL OF DYNAMICS AND DIFFERENTIAL EQUATIONS, 2024, 36 (SUPPL 1)
  • [39] Persistence of C1 Inertial Manifolds Under Small Random Perturbations
    Zhao, Junyilang
    Shen, Jun
    Lu, Kening
    JOURNAL OF DYNAMICS AND DIFFERENTIAL EQUATIONS, 2021, : 333 - 385