Exploiting orbits in symmetric ILP

被引:81
|
作者
Margot, F [1 ]
机构
[1] Univ Kentucky, Dept Math, Lexington, KY 40506 USA
关键词
branch-and-cut; isomorphism pruning; symmetry;
D O I
10.1007/s10107-003-0394-6
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
This paper describes components of a branch-and-cut algorithm for solving integer linear programs having a large symmetry group. It describes an isomorphism pruning algorithm and variable setting procedures using orbits of the symmetry group. Pruning and orbit computations are performed by backtracking procedures using a Schreier-Sims table for representing the symmetry group. Applications to hard set covering problems, generation of covering designs and error correcting codes are given.
引用
收藏
页码:3 / 21
页数:19
相关论文
共 50 条
  • [41] ON THE SYMMETRIC PERIODIC ORBITS IN THE COSMIC RAYS PROBLEM
    DEVOGELAERE, RJ
    BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1952, 58 (02) : 191 - 191
  • [42] Unstable periodic orbits in a rotationally symmetric potential
    Agekyan, TA
    Orlov, VV
    Kretser, NY
    ASTRONOMY LETTERS-A JOURNAL OF ASTRONOMY AND SPACE ASTROPHYSICS, 2001, 27 (11): : 754 - 757
  • [43] Unstable periodic orbits in a rotationally symmetric potential
    T. A. Agekyan
    V. V. Orlov
    N. Yu. Kretser
    Astronomy Letters, 2001, 27 : 754 - 757
  • [44] Charge orbits of symmetric special geometries and attractors
    Bellucci, Stefano
    Ferrara, Sergio
    Gunaydin, Murat
    Marrani, Alessio
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2006, 21 (25): : 5043 - 5097
  • [45] A classification of nilpotent orbits in infinitesimal symmetric spaces
    Fox, Joseph A.
    JOURNAL OF ALGEBRA, 2010, 323 (05) : 1358 - 1368
  • [46] Symmetrically homoclinic orbits for symmetric Hamiltonian systems
    Zhang, SQ
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2000, 247 (02) : 645 - 652
  • [47] PERIODIC ORBITS OF SINGULAR RADIALLY SYMMETRIC SYSTEMS
    Li, Shengjun
    Li, Wulan
    Fu, Yiping
    JOURNAL OF COMPUTATIONAL ANALYSIS AND APPLICATIONS, 2017, 22 (03) : 393 - 401
  • [48] Normality of Closures of Orthogonal Nilpotent Symmetric Orbits
    Trevisiol, M.
    TRANSFORMATION GROUPS, 2024, 29 (02) : 847 - 871
  • [49] Theta lifting of nilpotent orbits for symmetric pairs
    Nishiyama, K
    Ochiai, H
    Zhu, CB
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2006, 358 (06) : 2713 - 2734
  • [50] DYNAMICAL CONVEXITY AND CLOSED ORBITS ON SYMMETRIC SPHERES
    Ginzburg, Viktor L.
    Macarini, Leonardo
    DUKE MATHEMATICAL JOURNAL, 2021, 170 (06) : 1201 - 1250