A peculiar application of Atangana-Baleanu fractional derivative in neuroscience: Chaotic burst dynamics

被引:34
|
作者
Goufo, Emile F. Doungmo [1 ]
Mbehou, Mohamed [2 ]
Pene, Morgan M. Kamga [3 ]
机构
[1] Univ South Africa, Dept Math Sci, ZA-0003 Florida, South Africa
[2] Univ Yaounde I, Dept Math, Yaounde 812, Cameroon
[3] Univ Namibia, Dept Math, Private Bag 13301, Windhoek, Namibia
基金
新加坡国家研究基金会;
关键词
Atangana-Baleanu fractional derivative In caputo sense; Neuron of Hindmarsh-Rose; Bursting; Chaotic bifurcations; NERVE; MODEL;
D O I
10.1016/j.chaos.2018.08.003
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Recent discussions on the non validity of index law in fractional calculus have shown the amazing filtering feature of Mittag-Leffler function foreseing Atangana-Baleanu derivative as one of reliable mathematical tools for describing some complex world problems, like problems of neuronal activities. In this paper, neuronal dynamics described by a three dimensional model of Hindmarsh-Rose nerve cells with external current are analyzed analytically and numerically. We make use of the Atangana-Baleanu fractional derivative in Caputo sense (ABC derivative) and asses its impact on the dynamic, especially the role played by its derivative order in combination with another control parameter, the intensity of the applied external current. Our analysis proves existence of equilibria whose some are unstable of type saddle point, paving the ways for possible bifurcations in the process. Numerical approximations of solutions reveal a system with initially regular bursts that evolve into period-adding chaotic bifurcations as the control parameters change, with precisely the Atangana-Baleanu fractional derivative's order decreasing from 1 down to 0.5. (C) 2018 Elsevier Ltd. All rights reserved.
引用
收藏
页码:170 / 176
页数:7
相关论文
共 50 条
  • [31] Analysis and numerical simulation of multicomponent system with Atangana-Baleanu fractional derivative
    Owolabi, Kolade M.
    [J]. CHAOS SOLITONS & FRACTALS, 2018, 115 : 127 - 134
  • [32] Atangana-Baleanu derivative-based fractional model of COVID-19 dynamics in Ethiopia
    Aychluh, Mulualem
    Purohit, S. D.
    Agarwal, P.
    Suthar, D. L.
    [J]. APPLIED MATHEMATICS IN SCIENCE AND ENGINEERING, 2022, 30 (01): : 634 - 659
  • [33] Numerical approximation of fractional burgers equation with Atangana-Baleanu derivative in Caputo sense
    Yadav, Swati
    Pandey, Rajesh K.
    [J]. CHAOS SOLITONS & FRACTALS, 2020, 133
  • [34] A FRACTIONAL SARS-COV-2 MODEL WITH ATANGANA-BALEANU DERIVATIVE: APPLICATION TO FOURTH WAVE
    Chu, Yu-Ming
    Yassen, Mansour F.
    Ahmad, Irshad
    Sunthrayuth, Pongsakorn
    Khan, Muhammad Altaf
    [J]. FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2022, 30 (08)
  • [35] Applications of the Atangana-Baleanu Fractional Integral Operator
    Lupas, Alina Alb
    Catas, Adriana
    [J]. SYMMETRY-BASEL, 2022, 14 (03):
  • [36] Fractional model of Ebola virus in population of bats in frame of Atangana-Baleanu fractional derivative
    Almuqrin, M. A.
    Goswami, P.
    Sharma, S.
    Khan, I.
    Dubey, R. S.
    Khan, A.
    [J]. RESULTS IN PHYSICS, 2021, 26
  • [38] A new financial chaotic model in Atangana-Baleanu stochastic fractional differential equations
    Liping, Chen
    Khan, Muhammad Altaf
    Atangana, Abdon
    Kumar, Sunil
    [J]. ALEXANDRIA ENGINEERING JOURNAL, 2021, 60 (06) : 5193 - 5204
  • [39] Comparative Analysis of Advection-Dispersion Equations with Atangana-Baleanu Fractional Derivative
    Alshehry, Azzh Saad
    Yasmin, Humaira
    Ghani, Fazal
    Shah, Rasool
    Nonlaopon, Kamsing
    [J]. SYMMETRY-BASEL, 2023, 15 (04):
  • [40] Numerical analysis of dissipative system with noise model with the Atangana-Baleanu fractional derivative
    Alkahtani, Badr Saad T.
    [J]. CHAOS SOLITONS & FRACTALS, 2018, 116 : 239 - 248