A peculiar application of Atangana-Baleanu fractional derivative in neuroscience: Chaotic burst dynamics

被引:34
|
作者
Goufo, Emile F. Doungmo [1 ]
Mbehou, Mohamed [2 ]
Pene, Morgan M. Kamga [3 ]
机构
[1] Univ South Africa, Dept Math Sci, ZA-0003 Florida, South Africa
[2] Univ Yaounde I, Dept Math, Yaounde 812, Cameroon
[3] Univ Namibia, Dept Math, Private Bag 13301, Windhoek, Namibia
基金
新加坡国家研究基金会;
关键词
Atangana-Baleanu fractional derivative In caputo sense; Neuron of Hindmarsh-Rose; Bursting; Chaotic bifurcations; NERVE; MODEL;
D O I
10.1016/j.chaos.2018.08.003
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Recent discussions on the non validity of index law in fractional calculus have shown the amazing filtering feature of Mittag-Leffler function foreseing Atangana-Baleanu derivative as one of reliable mathematical tools for describing some complex world problems, like problems of neuronal activities. In this paper, neuronal dynamics described by a three dimensional model of Hindmarsh-Rose nerve cells with external current are analyzed analytically and numerically. We make use of the Atangana-Baleanu fractional derivative in Caputo sense (ABC derivative) and asses its impact on the dynamic, especially the role played by its derivative order in combination with another control parameter, the intensity of the applied external current. Our analysis proves existence of equilibria whose some are unstable of type saddle point, paving the ways for possible bifurcations in the process. Numerical approximations of solutions reveal a system with initially regular bursts that evolve into period-adding chaotic bifurcations as the control parameters change, with precisely the Atangana-Baleanu fractional derivative's order decreasing from 1 down to 0.5. (C) 2018 Elsevier Ltd. All rights reserved.
引用
收藏
页码:170 / 176
页数:7
相关论文
共 50 条
  • [1] Chaotic analysis of Atangana-Baleanu derivative fractional order Willis aneurysm system
    Gao, Fei
    Li, Wen-Qin
    Tong, Heng-Qing
    Li, Xi-Ling
    [J]. CHINESE PHYSICS B, 2019, 28 (09)
  • [2] A FRACTIONAL MODEL FOR THE DYNAMICS OF TUBERCULOSIS (TB) USING ATANGANA-BALEANU DERIVATIVE
    Ullah, Saif
    Khan, Muhammad Altaf
    Farooq, Muhammad
    Alzahrani, Ebraheem O.
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2020, 13 (03): : 937 - 956
  • [3] Freelance Model with Atangana-Baleanu Caputo Fractional Derivative
    Khan, Fareeha Sami
    Khalid, M.
    Al-moneef, Areej A.
    Ali, Ali Hasan
    Bazighifan, Omar
    [J]. SYMMETRY-BASEL, 2022, 14 (11):
  • [4] A Fractional SAIDR Model in the Frame of Atangana-Baleanu Derivative
    Ucar, Esmehan
    Ucar, Sumeyra
    Evirgen, Firat
    Ozdemir, Necati
    [J]. FRACTAL AND FRACTIONAL, 2021, 5 (02)
  • [5] Optimal control problems with Atangana-Baleanu fractional derivative
    Tajadodi, Haleh
    Khan, Aziz
    Francisco Gomez-Aguilar, Jose
    Khan, Hasib
    [J]. OPTIMAL CONTROL APPLICATIONS & METHODS, 2021, 42 (01): : 96 - 109
  • [6] Analysis of the dynamics of hepatitis E virus using the Atangana-Baleanu fractional derivative
    D. G. Prakasha
    P. Veeresha
    Haci Mehmet Baskonus
    [J]. The European Physical Journal Plus, 134
  • [7] Analysis of the dynamics of hepatitis E virus using the Atangana-Baleanu fractional derivative
    Prakasha, D. G.
    Veeresha, P.
    Baskonus, Haci Mehmet
    [J]. EUROPEAN PHYSICAL JOURNAL PLUS, 2019, 134 (05):
  • [8] A fractional dynamics of tuberculosis (TB) model in the frame of generalized Atangana-Baleanu derivative
    Shatanawi, Wasfi
    Abdo, Mohammed S.
    Abdulwasaa, Mansour A.
    Shah, Kamal
    Panchal, Satish K.
    Kawale, Sunil, V
    Ghadle, Kirtiwant P.
    [J]. RESULTS IN PHYSICS, 2021, 29
  • [9] Optimally analyzed fractional Coronavirus model with Atangana-Baleanu derivative
    Butt, A. I. K.
    Ahmad, W.
    Rafiq, M.
    Ahmad, N.
    Imran, M.
    [J]. RESULTS IN PHYSICS, 2023, 53
  • [10] Fuzzy fractional differential equations with the generalized Atangana-Baleanu fractional derivative
    Vu, Ho
    Ghanbari, Behzad
    Ngo Van Hoa
    [J]. FUZZY SETS AND SYSTEMS, 2022, 429 : 1 - 27