Localist network modelling in psychology: Ho-hum or hm-m-m?

被引:0
|
作者
Leth-Steensen, C [1 ]
机构
[1] No Michigan Univ, Dept Psychol, Marquette, MI 49855 USA
关键词
D O I
10.1017/S0140525X0041335X
中图分类号
B84 [心理学];
学科分类号
04 ; 0402 ;
摘要
Localist networks represent information in a very simple and straight forward way. However, localist modelling of complex behaviours ultimately entails the use of intricate "hand-designed" connectionist structures. It is, in fact, mainly these two aspects of localist network models that I believe have turned many researchers off them (perhaps wrongly so).
引用
收藏
页码:484 / +
页数:10
相关论文
共 26 条
  • [21] Modelling energy performance of residential dwellings by using the MARS technique, SVM-based approach, MLP neural network and M5 model tree
    Nieto, Paulino Jose Garcia
    Garcia-Gonzalo, Esperanza
    Paredes-Sanchez, Beatriz Maria
    Paredes-Sanchez, Jose Pablo
    [J]. APPLIED ENERGY, 2023, 341
  • [22] Kepler Object of Interest Network III. Kepler-82f: a new non-transiting 21 M⊕ planet from photodynamical modelling
    Freudenthal, J.
    von Essen, C.
    Ofir, A.
    Dreizler, S.
    Agol, E.
    Wedemeyer, S.
    Morris, B. M.
    Becker, A. C.
    Deeg, H. J.
    Hoyer, S.
    Mallonn, M.
    Poppenhaeger, K.
    Herrero, E.
    Ribas, I.
    Boumis, P.
    Liakos, A.
    [J]. ASTRONOMY & ASTROPHYSICS, 2019, 628
  • [23] TOWARDS BETTER COASTAL MAPPING USING FUSION OF HIGH TEMPORAL SENTINEL-2 AND PLANETSCOPE-2 IMAGERIES: 12 BANDS AT 3 M THROUGH NEURAL NETWORK MODELLING
    Collin, A.
    James, D.
    Feunteun, E.
    [J]. XXIV ISPRS CONGRESS: IMAGING TODAY, FORESEEING TOMORROW, COMMISSION III, 2022, 43-B3 : 479 - 484
  • [24] Comment on “Artificial neural network modelling of biological oxygen demand in rivers at the national level with input selection based on Monte Carlo simulations A. Šiljić & D. Antanasijević & A. Perić-Grujić & M. Ristić & V. Pocajt. Environ Sci Pollut Res (2014) 22: 4230-4241”
    Taher Rajaee
    Salar Khani
    [J]. Environmental Science and Pollution Research, 2015, 22 : 19313 - 19314
  • [25] j k l m n o p Aix-Marseille Universite <acute accent> , Faculte <acute accent> des Sciences Me <acute accent> dicales etParame <acute accent> dicales, C2VN, INRA 1260, INSERM 1263, AP-HM Ho pital de la Conception, Centre de Ne <acute accent> phrologie et Transplantation Re <acute accent> nale, Marseille, France
    Monghal, V.
    Puechal, X.
    Smets, P.
    Vandergheynst, F.
    Michel, M.
    Diot, E.
    Ramdani, Y.
    Moulinet, T.
    Dhote, R.
    Hautcoeur, A.
    Lelubre, C.
    Dominique, S.
    Lebourg, L.
    Melboucy, S.
    Wauters, N.
    Carlotti, A.
    Cachin, F.
    Ebbo, M.
    Jourde-Chiche, N.
    Iudici, M.
    Aumaitre, O.
    Andre, M.
    Terrier, B.
    Trefond, L.
    [J]. SEMINARS IN ARTHRITIS AND RHEUMATISM, 2024, 67
  • [26] Comment on "Artificial neural network modelling of biological oxygen demand in rivers at the national level with input selection based on Monte Carlo simulations A. Siljic & D. Antanasijevic & A. Peric-Grujic & M. Ristic & V. Pocajt. Environ Sci Pollut Res (2014) 22: 4230-4241"
    Rajaee, Taher
    Khani, Salar
    [J]. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH, 2015, 22 (23) : 19313 - 19314